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Abstract

This study investigates the application of advanced
statistical models for airborne Volatile organic
compounds (VOCs)-specifically xylene, toluene and
benzene-using air pollution data collected from the city
Visakhapatnam from the year 2018 to 2022. To capture
the non-normal distributional behavior of VOC
concentrations, three flexible probability distributions
were employed: Burr XII 3P, Log-Logistic 3P and
Dagum-I 3P. Parameter estimation was performed via
maximum likelihood estimation (MLE) while model
validation was achieved through P—P and Q-Q plots.
In order to identify the most suitable distribution for
modeling the air pollutant data, three distinct goodness
of fit test statistics and five model selection criteria
were applied.

The results demonstrate that the Dagum-l1 3P
distribution best fits xylene and benzene, while the Log-
Logistic 3P model is optimal for the moderately skewed
toluene concentrations. Cross-validation confirms
these findings, highlighting the reliability of tailored
distributional models for VOCs. The proposed
distributions provide a robust framework for predicting
air quality information and conducting accuracy
assessments with all calculations and visual
indications carried out with R-software. This work
underscores the potential of pollutant-specific
modeling for improved air quality assessment and
management strategies, contributing to environmental
health planning in urban-industrial areas.

Keywords: Air Pollution, Environmental Data Analysis,
VOC Modeling, Probability Distributions, Maximum
Likelihood Estimation, Cross-Validation.

Introduction

Air pollution indicates immediate danger towards
environment and health of public concern world-wide,
particularly in industrialized urban areas. Among the array
of harmful pollutants, volatile organic compounds like
xylene, toluene and benzene are of particular concern due to
their prevalence in both urban and industrial environments.

https://doi.org/10.25303/293rjce039051

These VOCs emitted from an assortment of sources,
including vehicular emissions, industrial processes and the
use of solvents, are known to contribute to both short- and
long-term health issues such as respiratory ailments,
neurological disorders and cancer, making them a significant
focus for environmental monitoring and regulatory control.
The city of Visakhapatnam, one of the India’s major
industrial hubs, has witnessed increasing VOC levels in
recent years. This escalation is largely attributed to the city’s
rapid growth and industrialization.

Traffic density and complex environmental conditions are
influenced by meteorology and topography. Understanding
VOC concentration patterns and accurately modeling their
statistical distribution is essential for effective air quality
management in urban-industrial regions. Effective modeling
can provide insights into pollutant behavior, can inform
regulatory standards and aid in designing interventions to
mitigate pollution's impact on public health and the
environment.

Previous studies have utilized various probability
distributions including normal, log-normal and other
standard models, to represent pollutant concentrations in the
atmosphere. However, such distributions often fall short in
capturing the non-normal, highly skewed nature typical of
VOC concentration. VOC distributions are commonly
characterized by extreme values, skewness and heavy tails,
necessitating the use of more flexible statistical models.
Advanced distributions like the Burr XII 3P, Log-Logistic
3P and Dagum-I 3P offer enhanced flexibility, enabling a
more accurate representation of pollutant concentration
variability and distributional behavior. These models have
been successfully applied in the fields such as income
inequality, environmental toxicology and epidemiology but
are relatively unexplored in air quality modeling for VOCs
in urban-industrial environments.

Research by Gavriil et al® analysed eight probability density
functions for PM1 and PM2 5 and concluded that the Pearson
type VI, inverse Gaussian and lognormal distributions
provide the best fits, particularly for high concentration
percentiles®. Ahmat et al' found that the three-parameter
Generalized Extreme Value (GEV) distribution is highly
effective in predicting extreme PMjiy concentrations in
Malaysia, demonstrating strong accuracy in forecasting
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exceedances’. Hein et al’ created a database of benzene,
toluene and xylene measurements to develop statistical
models predicting exposure levels based on various
workplace determinants.

The study addresses limitations in historical data and
modeling, providing parameter estimates for specific
operations that are useful for community-based studies'4.
Shen et al*# studied the embryotoxicity of benzene, toluene,
xylene and formaldehyde on murine embryonic stem cells
via airborne exposure, finding formaldehyde to be the most
toxic with significant IC (50) values. The study supports this
model as effective for predicting the embryotoxicity of
volatile organic compounds?. Atari and Luginaah?
developed land use regression models to predict BTEX
concentrations in Sarnia, Ontario, with industrial areas,
dwelling counts and highways accounting for most
variability (Rz 0.78-0.81). The study highlights the
importance of modeling BTEX to assess its health impacts
alongside nitrogen oxides and particulate matter?.

Nurmatov et al*? reviewed 8,455 studies on VOCs and their
effects on asthma and allergies, selecting 53 relevant
manuscripts. They found inconsistent evidence and
significant bias, particularly regarding aromatics and
formaldehyde and called for more rigorous research on VOC
exposure's impact'?. Thupeng®® utilized the three-parameter
Burr type XII distribution to model maximum nitrogen
dioxide levels at the Gaborone fire brigade in winter 2014.
Comparing it to the Dagum and log-logistic models, the Burr
type XII showed the best fit, highlighting its effectiveness
for modeling extreme ambient air pollution levels®. Bang et
al® found that large industrial complexes in Ulsan
contributed about 40% of annual BTX (Benzene, Toluene,
Xylene) levels in nearby urban areas, with higher
concentrations in summer. Contributions decreased with
distance from the sites, offering valuable data for
environmental epidemiology?.

Rashnuodi et al*® identified significant seasonal differences
in BTEX exposure among petrochemical workers in western
Iran, with strong correlations to biological indices. The study
emphasized the necessity for strategies to reduce hazardous
levels, especially for benzene and toluene. Kamani et al®
found that BTEX concentrations in indoor environments in
Zahedan, Iran, exceeded EPA limits. Carcinogenic risks
from benzene and ethylbenzene were significant and
toluene's hazard quotient was above one, indicating potential
health effects. Chaudhary et al® introduced the New
Extended Kumaraswamy Exponential Distribution to
analyze air quality data in Kathmandu, revealing poor
conditions with higher pollutant levels in winter. The model
demonstrated flexibility for forecasting and reliability
analyses, validated through various statistical tests.

This study evaluates the best suitability of the Burr XII 3P,

Log-Logistic 3P and Dagum-1 3P probability distributions
for modeling the concentrations of airborne xylene, toluene
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and benzene. The analysis utilizes air quality data from
Visakhapatnam, collected over the period from 2018 to
2022. Model parameters are estimated via Maximum
Likelihood Estimation (MLE). The adequacy of the fitted
models is assessed through graphical diagnostic tools
including P-P and Q-Q plots, while the fit quality is
evaluated using statistical tests such as the Anderson—
Darling, Kolmogorov—Smirnov and Cramér—von Mises
tests.

The Akaike Information Criterion (AIC), Corrected Akaike
Information Criterion (CAIC), Bayesian Information
Criterion (BIC), Hannan—Quinn Information Criterion
(HQIC) and Approximate Bayesian Information Criterion
(ABIC) were applied to assess model performance and select
the most appropriate distribution for each VOC.
Furthermore, to ensure the robustness and generalizability of
the models, K-fold cross-validation is employed. By
applying these advanced distributional models to VOC
concentration, this study contributes to the field of
environmental data analysis, offering a methodological
approach in understanding pollutant dynamics in regions
experiencing rapid industrial growth. This tailored modeling
approach aims to enhance air quality management strategies,
contributing to informed decision-making for environmental
health and regulatory practices in urban-industrial regions.

Material and Methods

Material: A dataset of daily average air quality
measurements, along with the application of Burr XII 3P,
Log-Logistic 3P and Dagum-1 3P statistical distributions is
described to model VOC trends accurately and to assess air
quality dynamics in an industrial setting.

Real Data Description: This study aims at data analysis; it
was conducted by using daily average ambient air quality
datasets collected from January 2018 to December 2022 by
the Andhra Pradesh Pollution Control Board at the
Continuous Ambient Air Quality monitoring station in
Visakhapatham  (GVMC). The datasets include
measurements of key airborne volatile organic compounds
(VOCs), specifically xylene, toluene and benzene, alongside
other pollutants such as Carbon Monoxide (CO), Ozone
(Os), Nitric Oxide (NO), Nitrogen Dioxide (NO-), Nitrogen
Oxides (NOx), Ammonia (NHs), Sulfur Dioxide (SO2),
PM2s and PMsio. Meteorological parameters including
temperature (AT), relative humidity (RH), wind speed (WS),
wind direction (WD), solar radiation (SR), barometric
pressure (BP) and rainfall (RF), were also recorded.

The data collection provides daily records, allowing for a
detailed assessment of air quality trends and meteorological
influences over a five-year period. To ensure data integrity,
preliminary processing involved handling missing values
through linear interpolation and addressing outliers, defined
as values exceeding three standard deviations from the
mean, using Winsorization. This comprehensive dataset
provides a robust foundation for advanced statistical
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distributions (Burr XII 3P, Log-Logistic 3P and Dagum-I
3P) inmodeling, enabling a thorough analysis of VOC trends
and variability in an industrial urban environment. It
facilitates detailed evaluations to better understand airborne
VOC levels in Visakhapatnam.

Continuous Probability Distributions in Air Pollution:
Statistical probability distributions are essential for
modeling air pollution data, offering a systematic approach
to capture variability and trends in environmental quality.
Given the observed non-normality and positive skewness in
VOC concentration data, three advanced probability
distributions were selected for fitting: Burr XII 3P, Log-
Logistic 3P and Dagum-1 3P. Each distribution were chosen
for its flexibility in capturing skewed, heavy-tailed behavior
often found in environmental datasets.

Burr-XIl 3P distribution: It is known effective for
modeling skewed or heavy-tailed data, making it suitable for

environmental data where extreme values may occur. The
probability density function (PDF) is as:

T-w-(x—o0)!
5T

and its cumulative distribution function (CDF) is:

f(x; T, w,0) =

F(x;T,0,0) =1— [1 4 (X;o-)r]—‘t

where x > o, > 0(Shape), w > 0(Scale) and o>
0 (Location).

Dagum-1 3P distribution: This distribution is versatile for
capturing heavy tails and variable skewness, making it a
strong candidate for pollutant data that exhibit significant
kurtosis. Its PDF and CDF are:

ypxY

o[+

f5v,p,d) = and  F(xv,p,d) = [1 +

B

where x > 0, y > 0(Shape), p > 0 (Shape) and ¢ >0
(Scale).

Log-Logistic 3P distribution: Commonly used in survival
and reliability analysis, this distribution is effective for
moderately skewed data and has been applied to VOC data
with moderate tail behavior. Its functions are defined as:

pov- (-t

f(X; u) V’ Y) = [V+(X—Y)p’]u+1 and F(X; P-' V' Y) =

1
1+($)Ll

where x >y, > 0(Shape), v>0 (Scale) and y>

0 (Location).
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Utilizing these three-parameter distributions enhances the
predictive accuracy and reliability of our analysis, allowing
for a better understanding of pollution dynamics and aiding
in informing policy decisions for air quality management.

Parameter Estimation: Parameter estimation for each
selected distribution, Burr XII 3P, Log-Logistic 3P and
Dagum-I 3P was conducted using the Maximum Likelihood
Estimation (MLE) method. MLE is a robust statistical
approach that maximizes the likelihood function, yielding
parameter values that best explain the observed data. For this
study, MLE was implemented in R program to ensure
accuracy and efficiency across the large VOC dataset®. The
likelihood functions for each distribution were optimized by
differentiating the log-likelihood to each parameter in
solving these equations computationally to obtain optimal
parameter values.

This approach ensured that each distribution’s unique shape,
scale and location parameters fitted specifically to the
concentration patterns of xylene, toluene and benzene, thus
capturing their distinct distributional characteristics. The use
of MLE allowed for reliable parameter estimates that align
with the skewed, non-normal nature of the air pollutant,
enhancing model accuracy and predictive performance.

Model Validation Techniques: To assess the accuracy and
appropriateness of each fitted model, a combination of
graphical and statistical validation techniques was applied.

Probability-Probability (P-P) Plot: PP plot facilitates a
comparison within the empirical cumulative distribution
function (CDF) of the observed data and the theoretical CDF
derived from the fitted model. This methodology is effective
for evaluating the degree of the model which aligns to the
cumulative distribution of the actual data. Precisely, for an
ordered sample x(1), X2y, .. -, Xy, P-P plot involves
plotting the empirical probabilities E(i) = ﬁ against the
model’s theoretical probabilities F(X()). A linear alignment
along the 45-degree line indicates that the theoretical

distribution closely approximates the observed data, thereby
suggesting a strong model fit.

Quantile-Quantile (Q-Q) Plot: Q-Q plot serves as an
additional graphical method for model validation that
compares the quantiles of the observed dataset with those of
the fitted distribution. In this plot, observed quantiles X are
plotted against theoretical quantiles F'(E(i)) derived from
the fitted model. A near-linear relationship along the 45-
degree line indicates that the model distribution aligns with
the empirical distribution.

This technique is especially effective for identifying
discrepancies in the tails, highlighting deviations in extreme
values. Collectively, these graphical methods provide an
intuitive framework for validating models by directly
assessing the correspondence between observed data and
theoretical models.
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Goodness of Fit Test Statistics

The Anderson-Darling (AD), Kolmogorov—Smirnov (KS)
and Cramér-von Mises (CVM) tests were conducted to
evaluate model fit quantitatively. These tests measure how
closely the fitted model matches the perceived data.

Kolmogorov-Smirnov (KS) Test: KS test is a non-
parametric statistical method that quantifies the maximum
distance between the empirical distribution function (EDF)
of the observed data and the theoretical cumulative
distribution function (CDF) derived from the fitted model.
For an ordered dataset xi, Xo,....... ,Xn, this test evaluates
supremum of the absolute differences between EDF and
theoretical CDF, thereby providing a measure of GOF. The
test is computed as:

K, = max(K,* K,")

where K,* = max;<icy | Ey(x;) — Fo(x;) | and K, =
maxi<icn | Fo(x;) — Fo(xy).

Here, Fn(X) is EDF of the sample and Fo(x) is theoretical
CDF. If KS test value is below the critical value or if p-value
exceeds the selected significance level, the null hypothesis
says that the data follows fitted distribution-cannot be
rejected, indicating a good fit.

Anderson-Darling (A?) Test: The A-D test modifies KS
test by placing more weight on the tails of distribution,
making it particularly sensitive to discrepancies in extreme
values. For a continuous distribution with ordered sample
X< x@ < -+ <X, the test statistic A2 is calculated as:

n

1
A= _n— HZ((z.i — D[In(F(x@)) + In(1

1=1

— FX@+1-p)D

A lower value of A?with a high p-value indicates a well-
fitting model. A-D test is effective for identifying
discrepancies at the distribution tails, a critical aspect in the
analysis of pollutant concentrations where extreme values
frequently exert significant influence.

Cramér—von Mises (W) Test: The C-vM test measures the
cumulative squared differences between EDF and
theoretical CDF across the entire range of data, providing a
balanced assessment of the fit across all distribution points.
The test statistic W for a sample of ordered data X, X@),
...... ,X(n), IS as:

o Lo N(2inl F( )2
_12.n+z 2.1 W

This test offers a comprehensive measure of fit quality and
is sensitive to deviations in both the central and tail regions
of the distribution. A higher p-value in C-vM test suggests
that the observed data aligns well with the fitted model.
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Model Selection Criteria: Model evaluation is essential in
statistical analysis for identifying the appropriate
distribution of wvolatile organic compound (VOC)
concentrations. It was based on a range of information
criteria to ensure optimal model choice by balancing fit
quality and model complexity.

Akaike Information Criterion (AIC): AIC is a theoretic
measure that evaluates model quality by balancing the trade-
off between fit accuracy and model complexity. It is defined
as:

AIC = —2.In(Likelihood) + 2.p,

where pgis the number of estimated parameters in each
model. Lower values of AIC indicate superior model
performance, as this criterion imposes a penalty on models
with extraneous parameters. By balancing fit quality with the
number of parameters, AIC facilitates the identification of
the most parsimonious model that adequately explains data
while avoiding overfitting.

Corrected Akaike Information Criterion (CAIC): CAIC
extends AIC by adding a correction for sample size,
particularly useful in cases with smaller datasets. CAIC is
expressed as:

. . _ n
CAIC = —2.In(Likelihood) + 2. pe.n S

CAIC imposes a more rigorous penalty for the inclusion of
additional parameters compared to AIC. This characteristic
diminishes the probability of selecting overly complex
models, particularly in contexts with limited sample sizes.

Bayesian Information Criterion (BIC): BIC, proposed by
Schwarz, also penalizes model complexity but with a
stronger focus on the sample size. This is calculated as:

BIC = —2.In(Likelihood) + pg.In(n)

BIC employs a logarithmic penalty for the number of
estimated parameters, scaled by the sample size, which
biases it more strongly against complex models than AlC.
Lower BIC values favor models that achieve high likelihood
with  fewer parameters, making BIC particularly
advantageous for selecting parsimonious models in large
datasets.

Hannan-Quinn Information Criterion (HQIC): HQIC
serves as an alternative to AIC and BIC by implementing a
penalty that increases at a rate slower than the logarithmic
factor applied in BIC. This distinctive characteristic allows
HQIC to balance model complexity and fit in a manner that
may be more favorable in certain analytical contexts. It is
estimated as:

HQIC = —2.In(Likelihood) + 2. pe.In(In(n))
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HQIC is beneficial in contexts prioritizing fit quality and
moderate model complexity, effectively balancing the lower
penalty of the AIC with the stronger penalty of BIC.

Approximate Bayesian Information Criterion (ABIC):
ABIC is a modified version of BIC designed to improve
model selection for small sample sizes by adjusting
complexity penalty to avoid favoring overly complex
models. It is found as:

2.95°

n

ABIC = —2.In(Likelihood) + pg.In(n) +

Lower ABIC values indicate better models, offering a more
balanced trade-off between fit and complexity in small
sample scenarios.

Log-Likelihood Criteria (LL): LL is a measure to assess
the fit of statistical models to data. It quantifies how better a
model explains the observed outcomes, with higher values
indicating a better fit. It is calculated as follows:

L(O) = Z log(f (x() 6))
i=1

where n is the number of observations, x(;) represents each
observed data point, f(x(;, 6) is PDF of chosen model
evaluated at x(;) parameterized by 0.

Cross-Validation: The K-fold cross-validation was
employed for the robustness and predictive performance of
the statistical models selected for VOC concentrations. In
this study, a 10-fold cross-validation approach was chosen
to assess the generalizability of each fitted distribution
model, dividing the dataset into ten subsets. For each
iteration, one subset was used as the validation set, while the
leftover nine subsets were used for training. This iterative
process was repeated ten times, calculating the average
performance metrics to ensure that the models were
evaluated across different data segments. Each model’s
performance was assessed using key selection criteria
including AIC, BIC, CAIC, ABIC and HQIC. These criteria
provide a balanced assessment, penalizing overly complex
models while rewarding those that effectively fit the data.
Lower average values across these metrics indicate a better
fit and model reliability. The cross-validation approach
enhances model generalizability by minimizing the risk of
overfitting and ensuring that the models can reliably predict
VOC concentrations across different time periods. This
method provides a robust evaluation framework, reinforcing
the findings from the goodness of fit test statistics and
supporting the choice of pollutant-specific models for
accurate air quality assessments.

Data Visualization Enhancements: To better interpret the

temporal trends and external influences on VOC
concentrations, figures 1 and 2 were enhanced with time
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series visualizations of xylene, toluene and benzene levels.
Shaded regions indicate seasonal periods (monsoon, winter,
summer), helping to visualize potential seasonal effects on
VOC levels, particularly increases during colder months
when pollutants may be trapped near the surface. Vertical
lines mark significant external events, such as the COVID-
19 lockdown in early 2020, allowing comparisons of
pollutant levels before, during and after these events. A 30-
day rolling average was calculated and overlaid on each plot
to smooth short-term fluctuations and clarify long-term
trends. Notable peaks and dips in VOC levels were annotated
with concentration values or brief explanations of potential
causes, adding context to extreme values. These
enhancements provide a detailed view of VOC concentration
trends, improving the assessment of model fit and pollutant
dynamics in response to seasonal and event-driven factors.

Results

In air pollutant modeling, the proposed advanced statistical
distributions provide distinct advantages that align with the
data characteristics. Analyzing xylene, toluene and benzene
reveals valuable insights into their concentration
distributions and statistical properties. Table 1 presents
descriptive  statistics for VOC concentrations in
Visakhapatnam from 2018 to 2022. Xylene has a mean
concentration of 2.73ug/mé and a standard deviation of
4.74pg/m3, indicating significant variability. Its median
concentration is 1.9ug/m3, lower than the mean, with a
skewness of 10.38 and kurtosis of 133.13, reflecting a right-
skewed distribution with substantial outliers. The range is
0.1 to 80.4ug/m3, showing sporadic spikes.

Toluene has a mean of 10.23ug/m3 and a sd of 7.46ug/ms,
with a median of 8.8 pg/ms3, skewness of 2.95 and kurtosis
of 15.11, indicating moderate skewness and a wide range of
78.3ug/m3. Benzene, with a mean of 3.47 pg/m? and sd of
1.9ug/m3, has a median of 3.2ug/m3, suggesting a more
symmetric distribution. Its skewness of 1.09 and kurtosis of
4.67 indicate slight right skewness, with a narrower range of
0.1 to 20.9ug/me. These patterns emphasize the need for
robust statistical modeling to accurately capture data
characteristics and extreme concentrations.

To address these needs, advanced statistical distributions
such as Burr XII 3P, Log-Logistic 3P and Dagum-I 3P were
evaluated to enhance predictive accuracy and inform
regulatory decisions in air quality management*.

The enhanced time series plots in figures 1 and 2 illustrate
seasonal patterns and responses to external events such as
the COVID-19 lockdown!t. Seasonal indicators allow for
clearer comparison of VOC concentration levels across
monsoon, winter and summer, while annotations reveal
potential links between extreme values and known events.
Figure 1 presents individual plots where xylene (blue line)

shows low-level fluctuations with sporadic peaks,
particularly during 2020-2021, suggesting episodic
increases in emissions.

43



Research Journal of Chemistry and Environment

Vol. 29 (3) March (2025)

Res. J. Chem. Environ.

Table 1
Descriptive Statistics for Xylene, Toluene and Benzene concentrations in Visakhapatnam
Statistic Air Pollutant
Xylene | Toluene | Benzene

Sample Size (n) 1,627 1627 1627
Minimum (pg/md) 0.1 0.1 0.1
Maximum (pg/m3) 80.4 78.4 20.9
1st Quartile 1.1 5.9 2.1
Median (ug/m?) 1.9 8.8 3.2
Mean (ug/m?3) 2.73 10.23 3471
3rd Quartile 3.2 12.85 4.7
Range (ug/m?3) 80.3 78.3 20.8
Standard Error of Mean (SE Mean) 0.12 0.18 0.047
Lower 95% CI for Mean 2.5 9.87 3.38
Upper 95% CI for Mean 2.96 10.59 3.56
Variance 22.47 55.67 3.6
Standard Deviation (ug/m?3) 4.74 7.46 19
Skewness 10.38 2.95 1.09
Kurtosis 133.13 15.11 4.67
Trimmed Mean (10%) (ug/m3) 2.14 9.3 3.35
Median Absolute Deviation (MAD) (ug/m?3) 1.48 4.89 1.93
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Figure 1: Time series plot of Xylene, Toluene and Benzene concentrations in Visakhapatnam (2018-2022), with
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seasonal indicators and annotations for significant events (e.g., COVID-19 lockdown) to highlight potential external
influences on VOC levels.
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Figure 2: Combined time series plot of Xylene, Toluene and Benzene concentrations, with rolling averages and
comparative shading, illustrating pollutant-specific trends and seasonal variations.
Table 2
Parameter Estimates and Standard Errors for Distribution Fits
Distribution | Parameter - Xylene - Toluene - Benzene
Estimate | Std. Error | Estimate | Std. Error | Estimate | Std. Error
Burr XII shapel 1.8127 0.0564 1.9799 0.0599 1.9761 0.0522
3p shape?2 0.3443 0.0257 0.1821 0.0188 0.0351 0.0139
scale 1.4746 0.0449 6.9306 0.1589 2.6907 0.0495
Log-Logistic shape 0.4433 0.0164 0.2598 0.0141 0.1771 0.0178
3p scale 0.6927 0.0326 2.4892 0.0488 1.7645 0.0966
threshold -0.12 0.0457 -3.271 0.5489 -2.6217 0.549
Dagum-| shapel.a 2.6033 0.1166 3.8459 0.1601 5.8476 0.3535
3p scale 2.6381 0.1359 12.9034 0.3722 5.209 0.1253
shape2.p 0.5868 0.0483 0.414 0.0275 0.2591 0.0217

Toluene (green line) exhibits higher variability and more
frequent fluctuations, especially from 2019 onward,
implying dynamic changes in its sources or atmospheric
behavior. Benzene (black line) remains relatively stable,
with intermittent spikes, especially around 2020, which may
reflect specific events or seasonal factors affecting its
concentration. These individual plots reveal unique temporal
behaviors and emission patterns for each VOC. Figure 2
combines these time series, allowing direct comparison and
emphasizing toluene’s pronounced fluctuations throughout
the period, contrasted by xylene's intermittent peaks and
benzene's relative stability with occasional variations.
Together, these enhancements underscore trends aligned
with the selected distribution models, highlighting the
pollutants’ seasonal behavior and variability.

Parameter Estimation: Table 2 presents parameter
estimates and standard errors for each distribution. They
provide insights into their suitability for modeling VOC
concentrations with MLE. The results for xylene, toluene
and benzenedemonstrate the superior performance of the
Dagum-I 3P, Log-Logistic 3P distributions compared to the
Burr-XIl 3P model. For xylene, Burr XII 3P distribution
shows shape parameters (shapel=1.8127, shape2=0.3443)
indicating moderate skewness, with a scale parameter of
1.4746. Low standard errors suggest reliable estimates. Log-
Logistic 3P model presents a lower shape parameter
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(0.4433) and scale (0.6927), with a threshold of -0.12
indicating a leftward shift. Dagum-1 3P distribution, with
higher shape 1 (2.6033) and shape 2 (0.5868), points to
pronounced tail behavior, emphasizing heavy-tailed
characteristics. For toluene, Burr XII 3P model's scale
parameter (6.9306) captures broader data range, while Log-
Logistic 3P fit, with a threshold of -3.27, indicates a
significant leftward shift. Dagum-1 3P distribution maintains
strong parameter estimates, suggesting a good fit. Benzene’s
Burr XI1 3P estimates (shapel=1.9761, scale=2.6907) imply
skewness towards higher values, whereas Log-Logistic 3P
distribution features a lower shape parameter (0.1771) and a
threshold of -2.62, suitable for describing the data's
distribution.

Parameter estimates show significant variability in scale and
shape, highlighting the necessity for multiple distribution
models to accurately characterize pollutants. This variability
is essential for choosing suitable models to improve
predictive accuracy and inform air quality management
strategies.

Confidence Intervals: Table 3 displays the confidence
intervals for the estimated parameters of each model
revealing key insights into each model’s suitability and
precision in capturing VOC characteristics for xylene,
toluene and benzene. These intervals indicate plausible
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values for the parameters, highlighting their statistical
significance and estimation precision.

The results in table 3 indicate that the Burr XII 3P
distribution shows narrow intervals for the shapel parameter
across pollutants, particularly for xylene, suggesting stable
estimates that effectively capture distributional shape and
skewness. However, benzene’s shape2 parameter exhibits
broader intervals, indicating greater uncertainty in modeling
its tail behavior, which is essential for pollutants with
extreme values.

For the Log-Logistic 3P distribution, narrow intervals for the
shape parameter suggest consistent model fit, although the
threshold parameter exhibits wider intervals for toluene and
benzene, reflecting uncertainty in lower bound estimates.
This variability suggests that the Log-Logistic 3P model is
effective for central values but may be less reliable for
extreme concentrations. The Dagum-I 3P distribution shows
significant variability in Benzene’s shape l.a parameter,
indicating higher uncertainty in modeling its heavy tail,
while xylene and toluene have relatively narrow intervals for
the scale parameter, demonstrating stable modeling
capability. Overall, the Burr XII 3P and Dagum-l 3P
distributions provide robust fits for xylene, while the Log-
Logistic 3P distribution aligns best with toluene’s moderate
skewness. For benzene, the Dagum-1 3P model captures

Res. J. Chem. Environ.

heavy-tailed behavior with some variability, underscoring
the need for pollutant-specific models to address unique
distributional profiles effectively.

Goodness-of-Fit tests: The goodness-of-fit for each
distribution model fitted to air pollutant data for xylene,
toluene and benzene, shown in table 4 is evaluated. The goal
is to determine which distribution best describes the
observed data using the KS, CVM and AD test statistics,
along with their respective p-values. In this analysis, the
Burr X11 3P distribution provides a reasonable fit for xylene,
with a low KS statistic (0.0348) and significant p-value
(0.0385). The CVM and AD statistics (0.2920 and 2.5047)
further support its suitability. Conversely, the Log-Logistic
3P distribution exhibits a poor fit, evidenced by higher KS,
CVM and AD values and low p-values (p=0.0076 for KS),
suggesting a significant deviation from the observed data.

The Dagum-lI 3P distribution has lower test statistics
(KS=0.0303) and higher p-values (p=0.09998 for KS),
indicating a good fit, more as strong as the Burr XI1 3P. For
toluene, the Burr XII 3P distribution again demonstrates a
good fit, with highly significant p-values (p=0.00107 for
KS) and high AD statistic (6.8843). The Log-Logistic 3P
distribution performs best in this case, with the lowest KS,
CVM and AD statistics (0.0149, 0.0616 and 0.8934) and
high p-values, indicating an excellent fit.

Table 3
Confidence Intervals for each Model Parameters and Air Pollutant
Distribution Parameter Xylene Toluene Benzene
2.50% | 97.50% | 2.50% | 97.50% | 2.50% | 97.50%
shapel 1.7022 1.9233 1.8625 2.0972 1.8738 2.0784
Burr XII 3P shape2 0.294 0.3946 0.1452 0.219 0.0079 0.0624
scale 1.3867 1.5626 6.6192 7.242 2.5937 2.7876
shape 0.411 0.4755 0.2321 0.2875 0.1423 0.2119
Log-Logistic 3P scale 0.6289 0.7565 2.3935 2.5849 1.5753 1.9538
thres -0.2096 | -0.0304 | -4.3467 | -2.1952 | -3.6976 | -1.5457
shapel.a 2.3748 2.8318 3.56322 4.1597 5.1547 6.5405
Dagum-I 3P scale 2.3717 2.9044 12.174 | 13.6328 | 4.9634 5.4546
shape2.p 0.492 0.6815 0.3601 0.4678 0.2165 0.3017
Table 4
Goodness-of-Fit Statistics for each Distribution of Xylene, Toluene and Benzene
Air Distribution KS CVM AD p-Value p-Value | p-Value
Pollutant (D) (A2 (KS) (CVM) (AD)
Burr XII 3P 0.0348 | 0.2920 | 2.5047 0.0385 0.1424 0.04926
Xylene Log-Logistic 3P 0.0414 | 0.4754 | 3.7767 0.0076 0.04602 0.01122
Dagum-1 3P 0.0303 | 0.2711 | 2.0263 0.09998 0.1635 0.08884
Burr XII 3P 0.0481 | 0.7885 | 6.8843 0.00107 0.00778 0.00038
Toluene Log-Logistic 3P 0.0149 | 0.0616 | 0.8934 0.8629 0.8041 0.4183
Dagum-1 3P 0.0417 | 0.4735 | 4.0282 0.00699 0.04652 0.00845
Burr XII 3P 0.0349 | 0.3169 | 2.8308 0.03787 0.1254 0.03338
Benzene Log-Logistic 3P 0.0521 | 0.7885 | 4.7209 0.00029 0.00779 0.00390
Dagum-1 3P 0.0313 | 0.3119 | 2.7869 0.0077 0.04809 0.03088
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The Dagum-I 3P distribution also shows a significant fit,
though not as strong as the Log-Logistic 3P, as reflected by
moderate KS and AD values (0.0417 and 4.0282).

For benzene, both the Burr XII 3P and Dagum-1 3P
distributions provide significant fits, with similar KS and
AD statistics (Burr XIlI 3P: KS=0.0349, AD=2.8308;
Dagum-I 3P: KS=0.0313, AD=2.7869), although the Burr-
XlI has slightly more significant p-values. The Log-Logistic
distribution performs poorly, with high KS, CVM and AD
statistics (AD=4.7209) and low p-values, suggesting that it
is not a suitable model for benzene. Overall, the BurrXIl 3P
consistently performs well for xylene and benzene where it
provides significant and reliable fits. The Log-Logistic 3P
distribution performs best for toluene but struggles to fit
xylene and benzene accurately. The Dagum-1 3P distribution
offers decent performance for xylene and benzene,
highlighting the importance of selecting the most
appropriate model for each pollutant in air quality
assessment.
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Graphical Assessment of Model Fits: Figures 3, 4 and 5
compare empirical and theoretical distribution functions for
xylene, toluene and benzene, modeled using the Burr XI1 3P,
Log-Logistic 3P and Dagum-1 3P distributions fitted via
maximum likelihood estimation (MLE). Each figure
displays the PDF and CDF alongside the fitted theoretical
versions, allowing for visual assessment of model accuracy.
Q-Q and P-P plots are also included to evaluate model fit by
comparing observed and theoretical quantiles and
cumulative probabilities.

In these plots, closer alignment along the 45-degree line
indicates a better fit, showing that the empirical data closely
follows the theoretical distribution. This analysis of PDFs,
CDFs, Q-Q and P-P plots collectively identifies the most
suitable model for each pollutant, offering critical insights
into the statistical behavior of these volatile organic
compounds and enhancing predictive accuracy in air quality
assessments.
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Figure 3: Empirical and Theoretical PDFs, CDFs, Q-Q and P-P Plots for Xylene using Burr XI1 3P, Log-Logistic 3P
and Dagum-I 3P Distributions
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Figure 4: Empirical and Theoretical PDFs, CDFs, Q-Q and P-P Plots for Toluene using Burr XI11 3P, Log-Logistic 3P
and Dagum-I1 3P Distributions
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Figure 5: Empirical and Theoretical PDFs, CDFs, Q-Q and P-P Plots for Benzene using Burr XI1 3P, Log-Logistic 3P
and Dagum-I1 3P Distributions

Table 5
Performance Metrics for each Model of Air Pollutant Concentrations
Distribution Pollutant LL AIC BIC CAIC HQIC ABIC
Xylene -3018.396 | 6042.791 | 6058.975 | 6061.98 6048.8 6058.98
Burr XI1 3P Toluene -5149.865 10305.73 | 10321.91 | 10324.91 | 10311.74 | 10321.91
Benzene -3252.617 6511.233 | 6527.416 | 6530.42 6517.24 6527.42
Xylene -3026.334 | 6058.668 | 6074.852 | 6077.85 6064.67 6074.85
Log-Logistic 3P Toluene -5112.609 10231.22 | 10247.4 10250.4 | 10237.22 | 10247.41
Benzene -3273.205 | 6552.411 | 6568.594 | 6571.59 6558.41 6568.60
Xylene -3012.997 6031.994 | 6048.177 | 6051.18 6037.99 6048.18
Dagum-I 3P Toluene -5117.143 10240.29 | 10256.47 | 10259.47 | 10246.29 | 10256.47
Benzene -3240.747 6487.494 | 6503.677 | 6506.68 6493.45 6503.68

In figure 3, the Dagum-1 3P distribution provides the best
overall fit for xylene, closely matching the empirical data in
both the PDF and CDF plots and showing minimal
deviations in the Q-Q and P-P plots. The Burr XII 3P
distribution performs reasonably well but with slight
deviations at the extremes, while the Log-Logistic 3P
distribution struggles with higher concentrations, as
reflected in the Q-Q and P-P plots. For toluene (Figure 4),
the Log-Logistic 3P distribution shows the best fit,
particularly in the Q-Q and P-P plots, with the Burr XII 3P
and Dagum-1 3P distributions performing moderately but
with noticeable deviations at the tails.

As shown in figure 5, both the Burr XI1 3P and Dagum-I 3P
distributions fit Benzene well, while the Log-Logistic 3P
distribution shows larger deviations, particularly at higher
concentrations, indicating a weaker fit. Overall, the Dagum-
I 3P distribution consistently offers the best fit for xylene
and benzene, while the Log-Logistic 3P distribution
performs best for toluene. The Burr XII 3P distribution
performs adequately across all pollutants but shows slight
limitations at extreme values, as seen in the comparative
plots.

Model Evaluation using Performance Metrics: This study
utilized the information criteria AIC, BIC, CAIC, HQIC and
ABIC along with log-likelihood to evaluate the fit of three
probability distributions-Burr XII 3P, Log-Logistic 3P and

https://doi.org/10.25303/293rjce039051

Dagum-I 3P-in modeling xylene, toluene and benzene
concentrations. These metrics provide a quantitative basis
for selecting the distribution that best fits each pollutant's
concentration data, as lower values indicate a better fit to the
observed data. Table 5 summarizes the performance metrics,
offering insights into the suitability of each distribution for
the air pollutant data.

For xylene, the Dagum-I 3P distribution achieved the lowest
values across all criteria (AIC = 6031.994, BIC = 6048.177,
CAIC = 6051.18, HQIC = 6037.99, ABIC = 6048.18),
suggesting it is the most suitable model for capturing
Xylene’s variability. These metrics indicate that the Dagum-
I 3P distribution has a more efficient balance between model
complexity and data fit for xylene, making it preferable to
Burr XI1 3P and Log-Logistic 3P. In the case of toluene, the
Log-Logistic 3P distribution outperformed the others,
reflected in its lower values for AIC (10231.22), BIC
(10247.4), CAIC (10250.4), HQIC (10237.22) and ABIC
(10247.41). This suggests that the Log-Logistic 3P
distribution better represents the underlying structure of
toluene concentrations, likely due to its flexibility in
accommodating the specific data patterns of toluene.

Thus, the Log-Logistic 3P distribution is considered the best
fit for modelling toluene variability. For benzene, the
Dagum-1 3P distribution again emerged as the superior
model, with the lowest AIC (6487.494), BIC (6503.677),
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CAIC (6506.68), HQIC (6493.45) and ABIC (6503.68)
values among the three distributions. This pattern
demonstrates the Dagum-1 3P distribution's effectiveness in
capturing benzene’s distributional characteristics, likely due
to its heavy-tailed nature, which matches the properties of
benzene data. These findings emphasize the effectiveness of
the Dagum-1 3P model for xylene and benzene and Log-
Logistic 3P for toluene, highlighting the importance of
model selection based on empirical criteria. This approach
enhances understanding of pollutant dynamics and supports
data-driven decisions in air quality management for
Visakhapatnam.

Model Validation using 10-Fold Cross-Validation: Table
6 details the average information criteria obtained via 10-
fold cross-validation for Burr XII 3P, Log-Logistic 3P and
Dagum-1 3P models applied to the airborne volatile organic
compounds (VOCs) xylene, toluene and benzene
concentrations. The criteria include AIC, BIC, CAIC, HQIC,
ABIC and log-likelihood, which indicate model
performance, with lower values suggesting better fit.

For xylene, the Dagum-1 3P model demonstrated the best
performance, with the lowest AIC (5428.99), BIC (5444.86),
CAIC (5430.99), HQIC (5434.91) and ABIC (5429.99),
alongside the highest log-likelihood (-2711.50). These
metrics suggest that Dagum-1 3P effectively captures the
underlying distribution of xylene concentrations, reflecting
its balance of accuracy and complexity. The Burr XII 3P
model performed reasonably well for xylene, as indicated by
its second-lowest AIC (5438.67) and BIC (5454.54) values,
though it trailed the Dagum-I 3P model. Conversely, the
Log-Logistic 3P model had the highest AIC (5453.04) and
other criteria values for xylene, indicating a relatively
weaker fit compared to Dagum-1 3P.

In the case of toluene, the Log-Logistic 3P model provided
the best fit, as evidenced by its lowest AIC (9208.48), BIC
(9224.34), CAIC (9210.48), HQIC (9214.40) and ABIC
(9209.48) values. These results suggest that the Log-Logistic
3P model effectively captures the unique distributional
characteristics of toluene, providing a more accurate fit than
the other distributions. The model’s log-likelihood of -
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4601.24, although not the highest among the three, further
supports its robustness for toluene. The Dagum-1 3P model
showed comparable performance with an AIC of 9216.53
and a log-likelihood of -4605.27, whereas the Burr XII 3P
model had significantly higher AIC and BIC values (9275.37
and 9291.23 respectively), marking it as the least suitable
model for toluene.

For Benzene, Dagum-I 3P again emerged as the best-fitting
model, achieving the lowest AIC (5839.09), BIC (5854.95),
CAIC (5841.09), HQIC (5845.00) and ABIC (5840.09)
values, alongside the highest log-likelihood (-2916.54). This
distribution’s performance for benzene indicates a strong
alignment with the dataset, particularly in capturing the
heavy-tailed characteristics often seen in benzene. The Burr
XII 3P model was followed with slightly higher values,
whereas the Log-Logistic 3P model had the highest AIC
(5897.54), indicating a less optimal fit for Benzene
concentrations.

In summary, the Dagum-1 3P distribution consistently
emerged as the most effective model for both xylene and
benzene, while the Log-Logistic 3P model demonstrated a
strong fit for Toluene. The Burr XII 3P model generally
performed the least well across all pollutants. These findings
highlight the necessity of selecting pollutant-specific models
that accurately capture the distributional nuances of each
VOC, thereby enhancing our understanding of air quality
dynamics. This model-specific approach is essential for
accurate environmental monitoring and the development of
data-driven strategies to manage VOC concentrations in
Visakhapatnam, ultimately supporting informed policy
decisions aimed at protecting public health.

Comparisons via Performance Criteria and Cross-
Validation: Model performance metrics and cross-
validation results to evaluate the robustness of the Burr XII
3P, Log-Logistic 3P and Dagum-l 3P distributions for
modeling VOC (xylene, toluene and benzene)
concentrations were compared. Multiple performance
metrics included AIC, BIC, CAIC, HQIC and ABIC, along
with log-likelihood to assess model fit quality for each
distribution.

Table

6

Average Information Criteria for Model Distributions of Xylene, Toluene and Benzene

using 10-Fold Cross-Validation

Distribution | Airborne AIC BIC CAIC HQIC ABIC LL

Burr XII Xylene | 5438.67 | 5454.54 | 5440.67 | 5444.59 | 5439.67 | -2716.34
3p Toluene | 9275.37 | 9291.23 | 9277.37 | 9281.29 | 9276.37 | -4634.68
Benzene | 5863.53 | 5879.4 | 5865.53 | 5869.45 | 5864.53 | -2928.77

Log-Logistic Xylene | 5453.04 | 5468.91 | 5455.04 | 5458.96 | 5454.04 | -2723.52
3p Toluene | 9208.48 | 9224.34 | 9210.48 | 9214.4 | 9209.48 | -4601.24
Benzene | 5897.54 | 5913.4 | 5899.54 | 5903.46 | 5898.54 | -2945.77

Dagum-| Xylene | 5428.99 | 5444.86 | 5430.99 | 5434.91 | 5429.99 | -2711.5
3p Toluene | 9216.53 | 92324 | 9218.53 | 9222.45 | 9217.53 | -4605.27
Benzene | 5839.09 | 5854.95 | 5841.09 5845 5840.09 | -2916.54
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These metrics provide a multidimensional view of model
performance, helping to identify the best fit for each VOC
based on a balance between accuracy and complexity.

For xylene and benzene, the Dagum-1 3P distribution
consistently achieved the lowest AIC, BIC, CAIC, HQIC
and ABIC values, indicating it as the most suitable model.
For toluene, the Log-Logistic 3P distribution demonstrated
the best fit, with consistently lower criteria values,
underscoring its strength in capturing the variability of
toluene concentrations. The Burr XII 3P model, in contrast,
showed relatively higher values across metrics, suggesting a
limited ability to model these VOCs accurately.

These findings appreciate applying 10-fold cross-validation,
further validating model reliability through averaged
performance metrics across multiple data segments. This
method reduces the potential for overfitting and strengthens
the evidence of model robustness. Cross-validation results
confirmed that Dagum-l 3P maintained superior
performance for xylene and benzene, while the Log-Logistic
3P model remained optimal for toluene, reinforcing its
effectiveness. The Burr XII 3P model again ranked lower,
confirming its limitations in accurately representing VOC
data patterns.

Dagum-1 3P model provides the best fit for xylene and
benzene, achieving the lowest average criteria scores. For
toluene, the Log-Logistic 3P model consistently performs
best, reflecting its capability to capture the compound’s
variability. Across pollutants, the Burr X1l 3P model ranks
lower, underscoring its limitations in accurately representing
these VOCs. This combined approach ensures that the
selected models not only align well with observed VOC
patterns but are also robust and reliable for use in
environmental monitoring and predictive analysis. The
results support targeted, data-driven decision-making for air
quality management in Visakhapatnam, facilitating more
effective mitigation strategies to address VOC pollution.

Discussion

This study provides a comparative analysis of statistical
distribution models for predicting VOC concentrations,
focusing on model effectiveness for different pollutants in
Visakhapatnam and identifying the most suitable model for
each compound. Our findings highlight the importance of
pollutant-specific models that align with the unique
distributional characteristics of each VOC. By applying Burr
XII 3P, Log-Logistic 3P and Dagum-I 3P distributions, we
observed distinct patterns that reveal both model suitability
and the nuanced behavior of VOC concentrations in an
urban-industrial setting. The Dagum-l 3P distribution
proved most effective in capturing the heavy-tailed
distributions of xylene and benzene, as indicated by its
lowest KS, AD and CvM test values, as well as AlIC, BIC,
CAIC, HQIC and ABIC scores, alongside high p-values
indicating a strong fit. The heavy tails observed in xylene
and benzene distributions suggest episodic concentration
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peaks, possibly driven by intermittent emissions or specific
environmental conditions in which the Dagum-1 3P model
accommodates well. This distribution’s ability to handle
high skewness and kurtosis aligns with the concentration
patterns of these VOCs, reflecting the impact of high-
emission events common in industrial areas. Its robustness
was further validated through 10-fold cross-validation,
confirming its effectiveness in modeling heavy-tailed data.
Conversely, toluene’s concentration profile was best
captured by the Log-Logistic 3P distribution, which
achieved consistently lower goodness-of-fit and information
criteria values than other models. The moderate skewness
and comparatively lower kurtosis of toluene concentrations
may account for this outcome, as the Log-Logistic 3P model
is well-suited for data with moderate tail behavior.

This fit may reflect a more consistent concentration pattern,
likely to be influenced by stable emission sources such as
vehicular emissions and other diffuse sources typical in
urban environments, differing from the more episodic
emissions observed in xylene and benzene. The Burr XII 3P
distribution, though flexible, consistently ranked lower than
the Dagum-I and Log-Logistic models in terms of goodness-
of-fit and selection criteria across all three VOCs. Its
comparatively poorer performance highlights limitations in
accurately representing the unique tail behaviors and
skewness of these pollutants, underscoring the need for
pollutant-specific modeling strategies instead of a one-size-
fits-all approach.

These findings emphasize the practical importance of
selecting models tailored to each pollutant, especially in
industrial areas like Visakhapatnam, where VOC emissions
vary by type and are affected by complex environmental
factors. Tailoring models to each pollutant enhances
accuracy in forecasting VOC levels, which is crucial for
regulatory planning and public health assessment.
Additionally, time series visualizations enabled us to
observe seasonal trends and responses to external events
such as the COVID-19 lockdown. Elevated VOC
concentrations during colder months suggest that seasonal
inversion effects contribute to pollutant accumulation, while
declines during the lockdown highlight the role of human
activity in VOC levels. These observations contextualize the
extreme values in the data, validating the selected
distribution models’ capacity to account for variability
influenced by both seasonal and anthropogenic factors.

This study underscores the utility of performance metrics
and cross-validation techniques in environmental modeling,
advocating for their broader use in air quality assessments.
While the current analysis focuses on xylene, toluene and
benzene, future research could extend this approach to other
VOCs or pollutants with similar complex distributional
properties. Additional studies could also examine
interactions  between  VOC  concentrations  and
meteorological factors to further enhance predictive
accuracy in urban-industrial areas.
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In summary, our pollutant-specific modeling approach,
validated through rigorous goodness-of-fit testing and cross-
validation, provides a robust framework for accurately
capturing VOC concentration distributions. These findings
are critical for environmental policy-making, enabling data-
driven strategies for air quality management tailored to the
distinct pollution profiles of urban-industrial contexts like
Visakhapatnam.

Conclusion

This research presents a comprehensive modeling approach
for VOC (Xylene, Toluene and Benzene) concentrations in
Visakhapatnam, showing that advanced statistical
distributions like Dagum-l 3P and Log-Logistic 3P
effectively capture the distributional characteristics of
xylene, benzene and toluene. By applying a suite of
goodness-of-fit tests, performance metrics and cross-
validation, we established that the Dagum-I 3P distribution
is most suitable for the highly skewed and heavy-tailed
distributions of xylene and benzene, while the Log-Logistic
3P distribution best represents the moderately skewed
toluene concentrations. These findings emphasize the
importance of selecting pollutant-specific models, as each
compound’s unique distributional profile affects model
accuracy and reliability.

This tailored approach to VOC modeling offers a valuable
tool for environmental monitoring, supporting more precise
forecasts of VOC levels and risk assessment in regions with
similar industrial profiles. Our methodology provides a
framework that can guide air quality management, helping
policymakers to prioritize regulatory efforts and refine
interventions for specific pollutants. Future work could
extend this modeling approach to additional VOCs or
regions, further enhancing data-driven environmental health
strategies across urban-industrial contexts.
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