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Abstract 
This study investigates the application of advanced 

statistical models for airborne Volatile organic 

compounds (VOCs)-specifically xylene, toluene and 

benzene-using air pollution data collected from the city 

Visakhapatnam from the year 2018 to 2022. To capture 

the non-normal distributional behavior of VOC 

concentrations, three flexible probability distributions 

were employed: Burr XII 3P, Log-Logistic 3P and 

Dagum-I 3P. Parameter estimation was performed via 

maximum likelihood estimation (MLE) while model 

validation was achieved through P–P and Q–Q plots. 

In order to identify the most suitable distribution for 

modeling the air pollutant data, three distinct goodness 

of fit test statistics and five model selection criteria 

were applied.  

 

The results demonstrate that the Dagum-I 3P 

distribution best fits xylene and benzene, while the Log-

Logistic 3P model is optimal for the moderately skewed 

toluene concentrations. Cross-validation confirms 

these findings, highlighting the reliability of tailored 

distributional models for VOCs. The proposed 

distributions provide a robust framework for predicting 

air quality information and conducting accuracy 

assessments with all calculations and visual 

indications carried out with R-software. This work 

underscores the potential of pollutant-specific 

modeling for improved air quality assessment and 

management strategies, contributing to environmental 

health planning in urban-industrial areas. 
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Introduction 
Air pollution indicates immediate danger towards 

environment and health of public concern world-wide, 

particularly in industrialized urban areas. Among the array 

of harmful pollutants, volatile organic compounds like 

xylene, toluene and benzene are of particular concern due to 

their prevalence in both urban and industrial environments. 

These VOCs emitted from an assortment of sources, 

including vehicular emissions, industrial processes and the 

use of solvents, are known to contribute to both short- and 

long-term health issues such as respiratory ailments, 

neurological disorders and cancer, making them a significant 

focus for environmental monitoring and regulatory control. 

The city of Visakhapatnam, one of the India’s major 

industrial hubs, has witnessed increasing VOC levels in 

recent years. This escalation is largely attributed to the city’s 

rapid growth and industrialization.  

 

Traffic density and complex environmental conditions are 

influenced by meteorology and topography. Understanding 

VOC concentration patterns and accurately modeling their 

statistical distribution is essential for effective air quality 

management in urban-industrial regions. Effective modeling 

can provide insights into pollutant behavior, can inform 

regulatory standards and aid in designing interventions to 

mitigate pollution's impact on public health and the 

environment. 

 

Previous studies have utilized various probability 

distributions including normal, log-normal and other 

standard models, to represent pollutant concentrations in the 

atmosphere. However, such distributions often fall short in 

capturing the non-normal, highly skewed nature typical of 

VOC concentration. VOC distributions are commonly 

characterized by extreme values, skewness and heavy tails, 

necessitating the use of more flexible statistical models. 

Advanced distributions like the Burr XII 3P, Log-Logistic 

3P and Dagum-I 3P offer enhanced flexibility, enabling a 

more accurate representation of pollutant concentration 

variability and distributional behavior. These models have 

been successfully applied in the fields such as income 

inequality, environmental toxicology and epidemiology but 

are relatively unexplored in air quality modeling for VOCs 

in urban-industrial environments. 

 

Research by Gavriil et al6 analysed eight probability density 

functions for PM10 and PM2.5 and concluded that the Pearson 

type VI, inverse Gaussian and lognormal distributions 

provide the best fits, particularly for high concentration 

percentiles6. Ahmat et al1 found that the three-parameter 

Generalized Extreme Value (GEV) distribution is highly 

effective in predicting extreme PM10 concentrations in 

Malaysia, demonstrating strong accuracy in forecasting 
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exceedances7. Hein et al7 created a database of benzene, 

toluene and xylene measurements to develop statistical 

models predicting exposure levels based on various 

workplace determinants.  

 

The study addresses limitations in historical data and 

modeling, providing parameter estimates for specific 

operations that are useful for community-based studies14. 

Shen et al14 studied the embryotoxicity of benzene, toluene, 

xylene and formaldehyde on murine embryonic stem cells 

via airborne exposure, finding formaldehyde to be the most 

toxic with significant IC (50) values. The study supports this 

model as effective for predicting the embryotoxicity of 

volatile organic compounds2. Atari and Luginaah2 

developed land use regression models to predict BTEX 

concentrations in Sarnia, Ontario, with industrial areas, 

dwelling counts and highways accounting for most 

variability (R²: 0.78–0.81). The study highlights the 

importance of modeling BTEX to assess its health impacts 

alongside nitrogen oxides and particulate matter1.  

 

Nurmatov et al12 reviewed 8,455 studies on VOCs and their 

effects on asthma and allergies, selecting 53 relevant 

manuscripts. They found inconsistent evidence and 

significant bias, particularly regarding aromatics and 

formaldehyde and called for more rigorous research on VOC 

exposure's impact12. Thupeng15 utilized the three-parameter 

Burr type XII distribution to model maximum nitrogen 

dioxide levels at the Gaborone fire brigade in winter 2014. 

Comparing it to the Dagum and log-logistic models, the Burr 

type XII showed the best fit, highlighting its effectiveness 

for modeling extreme ambient air pollution levels15. Bang et 

al3 found that large industrial complexes in Ulsan 

contributed about 40% of annual BTX (Benzene, Toluene, 

Xylene) levels in nearby urban areas, with higher 

concentrations in summer. Contributions decreased with 

distance from the sites, offering valuable data for 

environmental epidemiology3.  

 

Rashnuodi et al13 identified significant seasonal differences 

in BTEX exposure among petrochemical workers in western 

Iran, with strong correlations to biological indices. The study 

emphasized the necessity for strategies to reduce hazardous 

levels, especially for benzene and toluene. Kamani et al8 

found that BTEX concentrations in indoor environments in 

Zahedan, Iran, exceeded EPA limits. Carcinogenic risks 

from benzene and ethylbenzene were significant and 

toluene's hazard quotient was above one, indicating potential 

health effects. Chaudhary et al5 introduced the New 

Extended Kumaraswamy Exponential Distribution to 

analyze air quality data in Kathmandu, revealing poor 

conditions with higher pollutant levels in winter. The model 

demonstrated flexibility for forecasting and reliability 

analyses, validated through various statistical tests. 

 
This study evaluates the best suitability of the Burr XII 3P, 

Log-Logistic 3P and Dagum-I 3P probability distributions 

for modeling the concentrations of airborne xylene, toluene 

and benzene. The analysis utilizes air quality data from 

Visakhapatnam, collected over the period from 2018 to 

2022. Model parameters are estimated via Maximum 

Likelihood Estimation (MLE). The adequacy of the fitted 

models is assessed through graphical diagnostic tools 

including P–P and Q–Q plots, while the fit quality is 

evaluated using statistical tests such as the Anderson–

Darling, Kolmogorov–Smirnov and Cramér–von Mises 

tests.  

 

The Akaike Information Criterion (AIC), Corrected Akaike 

Information Criterion (CAIC), Bayesian Information 

Criterion (BIC), Hannan–Quinn Information Criterion 

(HQIC) and Approximate Bayesian Information Criterion 

(ABIC) were applied to assess model performance and select 

the most appropriate distribution for each VOC. 

Furthermore, to ensure the robustness and generalizability of 

the models, K-fold cross-validation is employed. By 

applying these advanced distributional models to VOC 

concentration, this study contributes to the field of 

environmental data analysis, offering a methodological 

approach in understanding pollutant dynamics in regions 

experiencing rapid industrial growth. This tailored modeling 

approach aims to enhance air quality management strategies, 

contributing to informed decision-making for environmental 

health and regulatory practices in urban-industrial regions. 

 

Material and Methods 
Material: A dataset of daily average air quality 

measurements, along with the application of Burr XII 3P, 

Log-Logistic 3P and Dagum-I 3P statistical distributions is 

described to model VOC trends accurately and to assess air 

quality dynamics in an industrial setting. 

 

Real Data Description: This study aims at data analysis; it 

was conducted by using daily average ambient air quality 

datasets collected from January 2018 to December 2022 by 

the Andhra Pradesh Pollution Control Board at the 

Continuous Ambient Air Quality monitoring station in 

Visakhapatnam (GVMC). The datasets include 

measurements of key airborne volatile organic compounds 

(VOCs), specifically xylene, toluene and benzene, alongside 

other pollutants such as Carbon Monoxide (CO), Ozone 

(O₃), Nitric Oxide (NO), Nitrogen Dioxide (NO₂), Nitrogen 

Oxides (NOx), Ammonia (NH₃), Sulfur Dioxide (SO₂), 

PM2.5 and PM10. Meteorological parameters including 

temperature (AT), relative humidity (RH), wind speed (WS), 

wind direction (WD), solar radiation (SR), barometric 

pressure (BP) and rainfall (RF), were also recorded.  

 

The data collection provides daily records, allowing for a 

detailed assessment of air quality trends and meteorological 

influences over a five-year period. To ensure data integrity, 

preliminary processing involved handling missing values 

through linear interpolation and addressing outliers, defined 

as values exceeding three standard deviations from the 

mean, using Winsorization. This comprehensive dataset 

provides a robust foundation for advanced statistical 
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distributions (Burr XII 3P, Log-Logistic 3P and Dagum-I 

3P) inmodeling, enabling a thorough analysis of VOC trends 

and variability in an industrial urban environment. It 

facilitates detailed evaluations to better understand airborne 

VOC levels in Visakhapatnam. 

 

Continuous Probability Distributions in Air Pollution: 

Statistical probability distributions are essential for 

modeling air pollution data, offering a systematic approach 

to capture variability and trends in environmental quality. 

Given the observed non-normality and positive skewness in 

VOC concentration data, three advanced probability 

distributions were selected for fitting: Burr XII 3P, Log-

Logistic 3P and Dagum-I 3P. Each distribution were chosen 

for its flexibility in capturing skewed, heavy-tailed behavior 

often found in environmental datasets. 

 

Burr-XII 3P distribution: It is known effective for 

modeling skewed or heavy-tailed data, making it suitable for 

environmental data where extreme values may occur. The 

probability density function (PDF) is as: 

 

f(x; τ, ω, σ) =
τ ⋅ ω ⋅ (x − σ)τ−1

[1 + (
x − σ

ω )
τ
]

τ+1 

 

and its cumulative distribution function (CDF) is: 

 

F(x; τ, ω, σ) = 1 − [1 + (
x − σ

ω
)

τ

]
−τ

 

 

where 𝑥 > 𝜎, 𝜏 > 0 (Shape), 𝜔 > 0 (Scale) and 𝜎 >
0 (Location). 

 

Dagum-I 3P distribution: This distribution is versatile for 

capturing heavy tails and variable skewness, making it a 

strong candidate for pollutant data that exhibit significant 

kurtosis. Its PDF and CDF are: 

 

f(x; γ, 𝑝, ϕ) =
γ⋅𝑝⋅xγ−1

ϕ[1+(
x

ϕ
)

γ
]

𝑝+1  and F(x; γ, p, ϕ) = [1 +

(
x

ϕ
)

γ
]

−𝑝

, 

 

where 𝑥 > 0, 𝛾 > 0(Shape), 𝑝 > 0 (Shape) and ϕ > 0 

(Scale). 

 

Log-Logistic 3P distribution: Commonly used in survival 

and reliability analysis, this distribution is effective for 

moderately skewed data and has been applied to VOC data 

with moderate tail behavior. Its functions are defined as: 

 

f(x; μ, ν, γ) =
μ⋅ν⋅(x−γ)μ−1

[ν+(x−γ)μ]μ+1  and F(x; μ, ν, γ) =
1

1+(
ν

x−γ
)

μ 

 

where 𝑥 > 𝛾,  μ > 0(Shape), ν > 0 (Scale) and γ >
0 (Location). 

Utilizing these three-parameter distributions enhances the 

predictive accuracy and reliability of our analysis, allowing 

for a better understanding of pollution dynamics and aiding 

in informing policy decisions for air quality management. 

 
Parameter Estimation: Parameter estimation for each 

selected distribution, Burr XII 3P, Log-Logistic 3P and 

Dagum-I 3P was conducted using the Maximum Likelihood 

Estimation (MLE) method. MLE is a robust statistical 

approach that maximizes the likelihood function, yielding 

parameter values that best explain the observed data. For this 

study, MLE was implemented in R program to ensure 

accuracy and efficiency across the large VOC dataset9. The 

likelihood functions for each distribution were optimized by 

differentiating the log-likelihood to each parameter in 

solving these equations computationally to obtain optimal 

parameter values.  

 

This approach ensured that each distribution’s unique shape, 

scale and location parameters fitted specifically to the 

concentration patterns of xylene, toluene and benzene, thus 

capturing their distinct distributional characteristics. The use 

of MLE allowed for reliable parameter estimates that align 

with the skewed, non-normal nature of the air pollutant, 

enhancing model accuracy and predictive performance. 

 
Model Validation Techniques: To assess the accuracy and 

appropriateness of each fitted model, a combination of 

graphical and statistical validation techniques was applied. 

 

Probability-Probability (P–P) Plot: P–P plot facilitates a 

comparison within the empirical cumulative distribution 

function (CDF) of the observed data and the theoretical CDF 

derived from the fitted model. This methodology is effective 

for evaluating the degree of the model which aligns to the 

cumulative distribution of the actual data. Precisely, for an 

ordered sample 𝑥(1), 𝑥(2), . . … , 𝑥(𝑛), P–P plot involves 

plotting the empirical probabilities E(i) =
i

n+1
 against the 

model’s theoretical probabilities F(x(i)). A linear alignment 

along the 45-degree line indicates that the theoretical 

distribution closely approximates the observed data, thereby 

suggesting a strong model fit. 

 

Quantile-Quantile (Q–Q) Plot: Q–Q plot serves as an 

additional graphical method for model validation that 

compares the quantiles of the observed dataset with those of 

the fitted distribution. In this plot, observed quantiles x(i) are 

plotted against theoretical quantiles F−1(E(i)) derived from 

the fitted model. A near-linear relationship along the 45-

degree line indicates that the model distribution aligns with 

the empirical distribution.  

 

This technique is especially effective for identifying 

discrepancies in the tails, highlighting deviations in extreme 

values. Collectively, these graphical methods provide an 

intuitive framework for validating models by directly 

assessing the correspondence between observed data and 

theoretical models. 
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Goodness of Fit Test Statistics 

The Anderson–Darling (AD), Kolmogorov–Smirnov (KS) 

and Cramér–von Mises (CVM) tests were conducted to 

evaluate model fit quantitatively. These tests measure how 

closely the fitted model matches the perceived data. 

 

Kolmogorov–Smirnov (KS) Test: KS test is a non-

parametric statistical method that quantifies the maximum 

distance between the empirical distribution function (EDF) 

of the observed data and the theoretical cumulative 

distribution function (CDF) derived from the fitted model. 

For an ordered dataset x1, x2,.……,xn, this test evaluates 

supremum of the absolute differences between EDF and 

theoretical CDF, thereby providing a measure of GOF. The 

test is computed as: 

 

Kn = max(Kn
+, Kn

−)  

 

where Kn
+ = 𝑚𝑎𝑥1≤𝑖≤𝑛 ∣ 𝐹𝑛(𝑥𝑖) − 𝐹0(𝑥𝑖) ∣ and Kn

− =
𝑚𝑎𝑥1≤𝑖≤𝑛 ∣ 𝐹0(𝑥𝑖) − 𝐹𝑛(𝑥𝑖). 
 

Here, Fn(x) is EDF of the sample and F0(x) is theoretical 

CDF. If KS test value is below the critical value or if p-value 

exceeds the selected significance level, the null hypothesis 

says that the data follows fitted distribution-cannot be 

rejected, indicating a good fit. 

 
Anderson–Darling (A2) Test: The A-D test modifies KS 

test by placing more weight on the tails of distribution, 

making it particularly sensitive to discrepancies in extreme 

values. For a continuous distribution with ordered sample 

x(1) ≤ x(2) ≤ ⋯ ≤ x(n) , the test statistic A2 is calculated as:  

 

A2 = −n −
1

n
∑((2. i − 1)[ln(

n

i=1

F(x(i))) + ln(1

− F(x(n+1−i)))]) 

 

A lower value of A2with a high p-value indicates a well-

fitting model. A–D test is effective for identifying 

discrepancies at the distribution tails, a critical aspect in the 

analysis of pollutant concentrations where extreme values 

frequently exert significant influence. 

 

Cramér–von Mises (W) Test: The C-vM test measures the 

cumulative squared differences between EDF and 

theoretical CDF across the entire range of data, providing a 

balanced assessment of the fit across all distribution points. 

The test statistic W for a sample of ordered data x(1), x(2), 

……,x(n), is as: 
 

𝑊 =
1

12. 𝑛
+ ∑ (

2. 𝑖 − 1

2. 𝑛
− 𝐹(𝑥(𝑖)))

2𝑛

𝑖=1

 

 

This test offers a comprehensive measure of fit quality and 

is sensitive to deviations in both the central and tail regions 

of the distribution. A higher p-value in C-vM test suggests 

that the observed data aligns well with the fitted model. 

Model Selection Criteria: Model evaluation is essential in 

statistical analysis for identifying the appropriate 

distribution of volatile organic compound (VOC) 

concentrations. It was based on a range of information 

criteria to ensure optimal model choice by balancing fit 

quality and model complexity. 

 

Akaike Information Criterion (AIC): AIC is a theoretic 

measure that evaluates model quality by balancing the trade-

off between fit accuracy and model complexity. It is defined 

as: 

 

AIC = −2. ln(Likelihood) + 2. pê 
 

where pêis the number of estimated parameters in each 

model. Lower values of AIC indicate superior model 

performance, as this criterion imposes a penalty on models 

with extraneous parameters. By balancing fit quality with the 

number of parameters, AIC facilitates the identification of 

the most parsimonious model that adequately explains data 

while avoiding overfitting. 

 

Corrected Akaike Information Criterion (CAIC): CAIC 

extends AIC by adding a correction for sample size, 

particularly useful in cases with smaller datasets. CAIC is 

expressed as: 

 

CAIC = −2. ln(Likelihood) + 2. pê.
n

n − pê − 1
 

 

CAIC imposes a more rigorous penalty for the inclusion of 

additional parameters compared to AIC. This characteristic 

diminishes the probability of selecting overly complex 

models, particularly in contexts with limited sample sizes.  

 
Bayesian Information Criterion (BIC): BIC, proposed by 

Schwarz, also penalizes model complexity but with a 

stronger focus on the sample size. This is calculated as: 

 

BIC = −2. ln(Likelihood) + pê. ln(n) 
 

BIC employs a logarithmic penalty for the number of 

estimated parameters, scaled by the sample size, which 

biases it more strongly against complex models than AIC. 

Lower BIC values favor models that achieve high likelihood 

with fewer parameters, making BIC particularly 

advantageous for selecting parsimonious models in large 

datasets. 

 

Hannan–Quinn Information Criterion (HQIC): HQIC 

serves as an alternative to AIC and BIC by implementing a 

penalty that increases at a rate slower than the logarithmic 

factor applied in BIC. This distinctive characteristic allows 

HQIC to balance model complexity and fit in a manner that 

may be more favorable in certain analytical contexts. It is 
estimated as: 

 

HQIC = −2. ln(Likelihood) + 2. pê. ln(ln(n)) 
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HQIC is beneficial in contexts prioritizing fit quality and 

moderate model complexity, effectively balancing the lower 

penalty of the AIC with the stronger penalty of BIC. 

 

Approximate Bayesian Information Criterion (ABIC): 
ABIC is a modified version of BIC designed to improve 

model selection for small sample sizes by adjusting 

complexity penalty to avoid favoring overly complex 

models. It is found as: 

 

ABIC = −2. ln(Likelihood) + pê. ln(n) +
2. pê

2

n
 

 

Lower ABIC values indicate better models, offering a more 

balanced trade-off between fit and complexity in small 

sample scenarios. 

 

Log-Likelihood Criteria (LL): LL is a measure to assess 

the fit of statistical models to data. It quantifies how better a 

model explains the observed outcomes, with higher values 

indicating a better fit. It is calculated as follows: 

 

𝐿(𝜃) = ∑ log (𝑓(𝑥(𝑖), 𝜃))

𝑛

𝑖=1

 

 

where n is the number of observations, 𝑥(𝑖) represents each 

observed data point, 𝑓(𝑥(𝑖), 𝜃) is PDF of chosen model 

evaluated at 𝑥(𝑖) parameterized by θ. 

 
Cross-Validation: The K-fold cross-validation was 

employed for the robustness and predictive performance of 

the statistical models selected for VOC concentrations. In 

this study, a 10-fold cross-validation approach was chosen 

to assess the generalizability of each fitted distribution 

model, dividing the dataset into ten subsets. For each 

iteration, one subset was used as the validation set, while the 

leftover nine subsets were used for training. This iterative 

process was repeated ten times, calculating the average 

performance metrics to ensure that the models were 

evaluated across different data segments. Each model’s 

performance was assessed using key selection criteria 

including AIC, BIC, CAIC, ABIC and HQIC. These criteria 

provide a balanced assessment, penalizing overly complex 

models while rewarding those that effectively fit the data. 

Lower average values across these metrics indicate a better 

fit and model reliability. The cross-validation approach 

enhances model generalizability by minimizing the risk of 

overfitting and ensuring that the models can reliably predict 

VOC concentrations across different time periods. This 

method provides a robust evaluation framework, reinforcing 

the findings from the goodness of fit test statistics and 

supporting the choice of pollutant-specific models for 

accurate air quality assessments. 

 

Data Visualization Enhancements: To better interpret the 

temporal trends and external influences on VOC 

concentrations, figures 1 and 2 were enhanced with time 

series visualizations of xylene, toluene and benzene levels. 

Shaded regions indicate seasonal periods (monsoon, winter, 

summer), helping to visualize potential seasonal effects on 

VOC levels, particularly increases during colder months 

when pollutants may be trapped near the surface. Vertical 

lines mark significant external events, such as the COVID-

19 lockdown in early 2020, allowing comparisons of 

pollutant levels before, during and after these events. A 30-

day rolling average was calculated and overlaid on each plot 

to smooth short-term fluctuations and clarify long-term 

trends. Notable peaks and dips in VOC levels were annotated 

with concentration values or brief explanations of potential 

causes, adding context to extreme values. These 

enhancements provide a detailed view of VOC concentration 

trends, improving the assessment of model fit and pollutant 

dynamics in response to seasonal and event-driven factors. 

 

Results  
In air pollutant modeling, the proposed advanced statistical 

distributions provide distinct advantages that align with the 

data characteristics. Analyzing xylene, toluene and benzene 

reveals valuable insights into their concentration 

distributions and statistical properties. Table 1 presents 

descriptive statistics for VOC concentrations in 

Visakhapatnam from 2018 to 2022. Xylene has a mean 

concentration of 2.73µg/m³ and a standard deviation of 

4.74µg/m³, indicating significant variability. Its median 

concentration is 1.9µg/m³, lower than the mean, with a 

skewness of 10.38 and kurtosis of 133.13, reflecting a right-

skewed distribution with substantial outliers. The range is 

0.1 to 80.4µg/m³, showing sporadic spikes.  

 

Toluene has a mean of 10.23µg/m³ and a sd of 7.46µg/m³, 

with a median of 8.8 µg/m³, skewness of 2.95 and kurtosis 

of 15.11, indicating moderate skewness and a wide range of 

78.3µg/m³. Benzene, with a mean of 3.47 µg/m³ and sd of 

1.9µg/m³, has a median of 3.2µg/m³, suggesting a more 

symmetric distribution. Its skewness of 1.09 and kurtosis of 

4.67 indicate slight right skewness, with a narrower range of 

0.1 to 20.9µg/m³. These patterns emphasize the need for 

robust statistical modeling to accurately capture data 

characteristics and extreme concentrations.  

 

To address these needs, advanced statistical distributions 

such as Burr XII 3P, Log-Logistic 3P and Dagum-I 3P were 

evaluated to enhance predictive accuracy and inform 

regulatory decisions in air quality management4. 

 

The enhanced time series plots in figures 1 and 2 illustrate 

seasonal patterns and responses to external events such as 

the COVID-19 lockdown11. Seasonal indicators allow for 

clearer comparison of VOC concentration levels across 

monsoon, winter and summer, while annotations reveal 

potential links between extreme values and known events. 

Figure 1 presents individual plots where xylene (blue line) 

shows low-level fluctuations with sporadic peaks, 

particularly during 2020-2021, suggesting episodic 

increases in emissions.
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Table 1 

Descriptive Statistics for Xylene, Toluene and Benzene concentrations in Visakhapatnam 

Statistic Air Pollutant 

Xylene Toluene Benzene 

Sample Size (n) 1,627 1627 1627 

Minimum (µg/m³) 0.1 0.1 0.1 

Maximum (µg/m³) 80.4 78.4 20.9 

1st Quartile 1.1 5.9 2.1 

Median (µg/m³) 1.9 8.8 3.2 

Mean (µg/m³) 2.73 10.23 3.471 

3rd Quartile 3.2 12.85 4.7 

Range (µg/m³) 80.3 78.3 20.8 

Standard Error of Mean (SE Mean) 0.12 0.18 0.047 

Lower 95% CI for Mean 2.5 9.87 3.38 

Upper 95% CI for Mean 2.96 10.59 3.56 

Variance 22.47 55.67 3.6 

Standard Deviation (µg/m³) 4.74 7.46 1.9 

Skewness 10.38 2.95 1.09 

Kurtosis 133.13 15.11 4.67 

Trimmed Mean (10%) (µg/m³) 2.14 9.3 3.35 

Median Absolute Deviation (MAD) (µg/m³) 1.48 4.89 1.93 

 

 

 

 
Figure 1: Time series plot of Xylene, Toluene and Benzene concentrations in Visakhapatnam (2018–2022), with 

seasonal indicators and annotations for significant events (e.g., COVID-19 lockdown) to highlight potential external 

influences on VOC levels. 
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Figure 2: Combined time series plot of Xylene, Toluene and Benzene concentrations, with rolling averages and 

comparative shading, illustrating pollutant-specific trends and seasonal variations. 

 

Table 2 

Parameter Estimates and Standard Errors for Distribution Fits 

Distribution Parameter 
Xylene Toluene Benzene 

Estimate Std. Error Estimate Std. Error Estimate Std. Error 

Burr XII 

3P 

shape1 1.8127 0.0564 1.9799 0.0599 1.9761 0.0522 

shape2 0.3443 0.0257 0.1821 0.0188 0.0351 0.0139 

scale 1.4746 0.0449 6.9306 0.1589 2.6907 0.0495 

Log-Logistic 

3P 

shape 0.4433 0.0164 0.2598 0.0141 0.1771 0.0178 

scale 0.6927 0.0326 2.4892 0.0488 1.7645 0.0966 

threshold -0.12 0.0457 -3.271 0.5489 -2.6217 0.549 

Dagum-I 

3P 

shape1.a 2.6033 0.1166 3.8459 0.1601 5.8476 0.3535 

scale 2.6381 0.1359 12.9034 0.3722 5.209 0.1253 

shape2.p 0.5868 0.0483 0.414 0.0275 0.2591 0.0217 

 

Toluene (green line) exhibits higher variability and more 

frequent fluctuations, especially from 2019 onward, 

implying dynamic changes in its sources or atmospheric 

behavior. Benzene (black line) remains relatively stable, 

with intermittent spikes, especially around 2020, which may 

reflect specific events or seasonal factors affecting its 

concentration. These individual plots reveal unique temporal 

behaviors and emission patterns for each VOC.  Figure 2 

combines these time series, allowing direct comparison and 

emphasizing toluene’s pronounced fluctuations throughout 

the period, contrasted by xylene's intermittent peaks and 

benzene's relative stability with occasional variations. 

Together, these enhancements underscore trends aligned 

with the selected distribution models, highlighting the 

pollutants’ seasonal behavior and variability. 

 

Parameter Estimation: Table 2 presents parameter 

estimates and standard errors for each distribution. They 

provide insights into their suitability for modeling VOC 

concentrations with MLE. The results for xylene, toluene 

and benzenedemonstrate the superior performance of the 

Dagum-I 3P, Log-Logistic 3P distributions compared to the 

Burr-XII 3P model. For xylene, Burr XII 3P distribution 

shows shape parameters (shape1=1.8127, shape2=0.3443) 

indicating moderate skewness, with a scale parameter of 

1.4746. Low standard errors suggest reliable estimates. Log-

Logistic 3P model presents a lower shape parameter 

(0.4433) and scale (0.6927), with a threshold of -0.12 

indicating a leftward shift. Dagum-I 3P distribution, with 

higher shape 1 (2.6033) and shape 2 (0.5868), points to 

pronounced tail behavior, emphasizing heavy-tailed 

characteristics. For toluene, Burr XII 3P model's scale 

parameter (6.9306) captures broader data range, while Log-

Logistic 3P fit, with a threshold of -3.27, indicates a 

significant leftward shift. Dagum-I 3P distribution maintains 

strong parameter estimates, suggesting a good fit. Benzene’s 

Burr XII 3P estimates (shape1=1.9761, scale=2.6907) imply 

skewness towards higher values, whereas Log-Logistic 3P 

distribution features a lower shape parameter (0.1771) and a 

threshold of -2.62, suitable for describing the data's 

distribution. 

 

Parameter estimates show significant variability in scale and 

shape, highlighting the necessity for multiple distribution 

models to accurately characterize pollutants. This variability 

is essential for choosing suitable models to improve 

predictive accuracy and inform air quality management 

strategies. 

 
Confidence Intervals: Table 3 displays the confidence 

intervals for the estimated parameters of each model 

revealing key insights into each model’s suitability and 

precision in capturing VOC characteristics for xylene, 

toluene and benzene. These intervals indicate plausible 
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values for the parameters, highlighting their statistical 

significance and estimation precision. 

 

The results in table 3 indicate that the Burr XII 3P 

distribution shows narrow intervals for the shape1 parameter 

across pollutants, particularly for xylene, suggesting stable 

estimates that effectively capture distributional shape and 

skewness. However, benzene’s shape2 parameter exhibits 

broader intervals, indicating greater uncertainty in modeling 

its tail behavior, which is essential for pollutants with 

extreme values. 

 

For the Log-Logistic 3P distribution, narrow intervals for the 

shape parameter suggest consistent model fit, although the 

threshold parameter exhibits wider intervals for toluene and 

benzene, reflecting uncertainty in lower bound estimates. 

This variability suggests that the Log-Logistic 3P model is 

effective for central values but may be less reliable for 

extreme concentrations. The Dagum-I 3P distribution shows 

significant variability in Benzene’s shape 1.a parameter, 

indicating higher uncertainty in modeling its heavy tail, 

while xylene and toluene have relatively narrow intervals for 

the scale parameter, demonstrating stable modeling 

capability. Overall, the Burr XII 3P and Dagum-I 3P 

distributions provide robust fits for xylene, while the Log-

Logistic 3P distribution aligns best with toluene’s moderate 

skewness. For benzene, the Dagum-I 3P model captures 

heavy-tailed behavior with some variability, underscoring 

the need for pollutant-specific models to address unique 

distributional profiles effectively. 

 

Goodness-of-Fit tests: The goodness-of-fit for each 

distribution model fitted to air pollutant data for xylene, 

toluene and benzene, shown in table 4 is evaluated. The goal 

is to determine which distribution best describes the 

observed data using the KS, CVM and AD test statistics, 

along with their respective p-values. In this analysis, the 

Burr XII 3P distribution provides a reasonable fit for xylene, 

with a low KS statistic (0.0348) and significant p-value 

(0.0385). The CVM and AD statistics (0.2920 and 2.5047) 

further support its suitability. Conversely, the Log-Logistic 

3P distribution exhibits a poor fit, evidenced by higher KS, 

CVM and AD values and low p-values (p=0.0076 for KS), 

suggesting a significant deviation from the observed data. 

 

The Dagum-I 3P distribution has lower test statistics 

(KS=0.0303) and higher p-values (p=0.09998 for KS), 

indicating a good fit, more as strong as the Burr XII 3P. For 

toluene, the Burr XII 3P distribution again demonstrates a 

good fit, with highly significant p-values (p=0.00107 for 

KS) and high AD statistic (6.8843). The Log-Logistic 3P 

distribution performs best in this case, with the lowest KS, 

CVM and AD statistics (0.0149, 0.0616 and 0.8934) and 

high p-values, indicating an excellent fit.

 

Table 3 

Confidence Intervals for each Model Parameters and Air Pollutant 

Distribution Parameter 
Xylene Toluene Benzene 

2.50% 97.50% 2.50% 97.50% 2.50% 97.50% 

Burr XII 3P  

shape1 1.7022 1.9233 1.8625 2.0972 1.8738 2.0784 

shape2 0.294 0.3946 0.1452 0.219 0.0079 0.0624 

scale 1.3867 1.5626 6.6192 7.242 2.5937 2.7876 

Log-Logistic 3P 

shape 0.411 0.4755 0.2321 0.2875 0.1423 0.2119 

scale 0.6289 0.7565 2.3935 2.5849 1.5753 1.9538 

thres -0.2096 -0.0304 -4.3467 -2.1952 -3.6976 -1.5457 

Dagum-I 3P 

shape1.a 2.3748 2.8318 3.5322 4.1597 5.1547 6.5405 

scale 2.3717 2.9044 12.174 13.6328 4.9634 5.4546 

shape2.p 0.492 0.6815 0.3601 0.4678 0.2165 0.3017 

 

Table 4 

Goodness-of-Fit Statistics for each Distribution of Xylene, Toluene and Benzene 

Air 

Pollutant 
Distribution 

KS 

(D) 

CVM 

(W²) 

AD 

(A²) 

p-Value 

(KS) 

p-Value 

(CVM) 

p-Value 

(AD) 

Xylene 

Burr XII 3P 0.0348 0.2920 2.5047 0.0385 0.1424 0.04926 

Log-Logistic 3P 0.0414 0.4754 3.7767 0.0076 0.04602 0.01122 

Dagum-I 3P 0.0303 0.2711 2.0263 0.09998 0.1635 0.08884 

Toluene 

Burr XII 3P 0.0481 0.7885 6.8843 0.00107 0.00778 0.00038 

Log-Logistic 3P 0.0149 0.0616 0.8934 0.8629 0.8041 0.4183 

Dagum-I 3P 0.0417 0.4735 4.0282 0.00699 0.04652 0.00845 

Benzene 

Burr XII 3P 0.0349 0.3169 2.8308 0.03787 0.1254 0.03338 

Log-Logistic 3P 0.0521 0.7885 4.7209 0.00029 0.00779 0.00390 

Dagum-I 3P 0.0313 0.3119 2.7869 0.0077 0.04809 0.03088 
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The Dagum-I 3P distribution also shows a significant fit, 

though not as strong as the Log-Logistic 3P, as reflected by 

moderate KS and AD values (0.0417 and 4.0282). 

 

For benzene, both the Burr XII 3P and Dagum-I 3P 

distributions provide significant fits, with similar KS and 

AD statistics (Burr XII 3P: KS=0.0349, AD=2.8308; 

Dagum-I 3P: KS=0.0313, AD=2.7869), although the Burr-

XII has slightly more significant p-values. The Log-Logistic 

distribution performs poorly, with high KS, CVM and AD 

statistics (AD=4.7209) and low p-values, suggesting that it 

is not a suitable model for benzene. Overall, the BurrXII 3P 

consistently performs well for xylene and benzene where it 

provides significant and reliable fits. The Log-Logistic 3P 

distribution performs best for toluene but struggles to fit 

xylene and benzene accurately. The Dagum-I 3P distribution 

offers decent performance for xylene and benzene, 

highlighting the importance of selecting the most 

appropriate model for each pollutant in air quality 

assessment. 

Graphical Assessment of Model Fits: Figures 3, 4 and 5 

compare empirical and theoretical distribution functions for 

xylene, toluene and benzene, modeled using the Burr XII 3P, 

Log-Logistic 3P and Dagum-I 3P distributions fitted via 

maximum likelihood estimation (MLE). Each figure 

displays the PDF and CDF alongside the fitted theoretical 

versions, allowing for visual assessment of model accuracy. 

Q-Q and P-P plots are also included to evaluate model fit by 

comparing observed and theoretical quantiles and 

cumulative probabilities.  

 

In these plots, closer alignment along the 45-degree line 

indicates a better fit, showing that the empirical data closely 

follows the theoretical distribution. This analysis of PDFs, 

CDFs, Q-Q and P-P plots collectively identifies the most 

suitable model for each pollutant, offering critical insights 

into the statistical behavior of these volatile organic 

compounds and enhancing predictive accuracy in air quality 

assessments. 

 

 
Figure 3: Empirical and Theoretical PDFs, CDFs, Q-Q and P-P Plots for Xylene using Burr XII 3P, Log-Logistic 3P 

and Dagum-I 3P Distributions 

 

 
Figure 4: Empirical and Theoretical PDFs, CDFs, Q-Q and P-P Plots for Toluene using Burr XII 3P, Log-Logistic 3P 

and Dagum-I 3P Distributions 
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Figure 5: Empirical and Theoretical PDFs, CDFs, Q-Q and P-P Plots for Benzene using Burr XII 3P, Log-Logistic 3P 

and Dagum-I 3P Distributions 

 

Table 5 

Performance Metrics for each Model of Air Pollutant Concentrations 

Distribution Pollutant LL AIC BIC CAIC HQIC ABIC 

Burr XII 3P 

Xylene -3018.396 6042.791 6058.975 6061.98 6048.8 6058.98 

Toluene -5149.865 10305.73 10321.91 10324.91 10311.74 10321.91 

Benzene -3252.617 6511.233 6527.416 6530.42 6517.24 6527.42 

Log-Logistic 3P 

Xylene -3026.334 6058.668 6074.852 6077.85 6064.67 6074.85 

Toluene -5112.609 10231.22 10247.4 10250.4 10237.22 10247.41 

Benzene -3273.205 6552.411 6568.594 6571.59 6558.41 6568.60 

Dagum-I 3P 

Xylene -3012.997 6031.994 6048.177 6051.18 6037.99 6048.18 

Toluene -5117.143 10240.29 10256.47 10259.47 10246.29 10256.47 

Benzene -3240.747 6487.494 6503.677 6506.68 6493.45 6503.68 

 

In figure 3, the Dagum-I 3P distribution provides the best 

overall fit for xylene, closely matching the empirical data in 

both the PDF and CDF plots and showing minimal 

deviations in the Q-Q and P-P plots. The Burr XII 3P 

distribution performs reasonably well but with slight 

deviations at the extremes, while the Log-Logistic 3P 

distribution struggles with higher concentrations, as 

reflected in the Q-Q and P-P plots. For toluene (Figure 4), 

the Log-Logistic 3P distribution shows the best fit, 

particularly in the Q-Q and P-P plots, with the Burr XII 3P 

and Dagum-I 3P distributions performing moderately but 

with noticeable deviations at the tails. 

 

As shown in figure 5, both the Burr XII 3P and Dagum-I 3P 

distributions fit Benzene well, while the Log-Logistic 3P 

distribution shows larger deviations, particularly at higher 

concentrations, indicating a weaker fit. Overall, the Dagum-

I 3P distribution consistently offers the best fit for xylene 

and benzene, while the Log-Logistic 3P distribution 

performs best for toluene. The Burr XII 3P distribution 

performs adequately across all pollutants but shows slight 

limitations at extreme values, as seen in the comparative 

plots. 

 

Model Evaluation using Performance Metrics: This study 

utilized the information criteria AIC, BIC, CAIC, HQIC and 

ABIC along with log-likelihood to evaluate the fit of three 

probability distributions-Burr XII 3P, Log-Logistic 3P and 

Dagum-I 3P-in modeling xylene, toluene and benzene 

concentrations. These metrics provide a quantitative basis 

for selecting the distribution that best fits each pollutant's 

concentration data, as lower values indicate a better fit to the 

observed data. Table 5 summarizes the performance metrics, 

offering insights into the suitability of each distribution for 

the air pollutant data. 

 

For xylene, the Dagum-I 3P distribution achieved the lowest 

values across all criteria (AIC = 6031.994, BIC = 6048.177, 

CAIC = 6051.18, HQIC = 6037.99, ABIC = 6048.18), 

suggesting it is the most suitable model for capturing 

xylene’s variability. These metrics indicate that the Dagum-

I 3P distribution has a more efficient balance between model 

complexity and data fit for xylene, making it preferable to 

Burr XII 3P and Log-Logistic 3P. In the case of toluene, the 

Log-Logistic 3P distribution outperformed the others, 

reflected in its lower values for AIC (10231.22), BIC 

(10247.4), CAIC (10250.4), HQIC (10237.22) and ABIC 

(10247.41). This suggests that the Log-Logistic 3P 

distribution better represents the underlying structure of 

toluene concentrations, likely due to its flexibility in 

accommodating the specific data patterns of toluene.  

 

Thus, the Log-Logistic 3P distribution is considered the best 

fit for modelling toluene variability. For benzene, the 

Dagum-I 3P distribution again emerged as the superior 

model, with the lowest AIC (6487.494), BIC (6503.677), 
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CAIC (6506.68), HQIC (6493.45) and ABIC (6503.68) 

values among the three distributions. This pattern 

demonstrates the Dagum-I 3P distribution's effectiveness in 

capturing benzene’s distributional characteristics, likely due 

to its heavy-tailed nature, which matches the properties of 

benzene data. These findings emphasize the effectiveness of 

the Dagum-I 3P model for xylene and benzene and Log-

Logistic 3P for toluene, highlighting the importance of 

model selection based on empirical criteria. This approach 

enhances understanding of pollutant dynamics and supports 

data-driven decisions in air quality management for 

Visakhapatnam. 

 

Model Validation using 10-Fold Cross-Validation: Table 

6 details the average information criteria obtained via 10-

fold cross-validation for Burr XII 3P, Log-Logistic 3P and 

Dagum-I 3P models applied to the airborne volatile organic 

compounds (VOCs) xylene, toluene and benzene 

concentrations. The criteria include AIC, BIC, CAIC, HQIC, 

ABIC and log-likelihood, which indicate model 

performance, with lower values suggesting better fit. 

 

For xylene, the Dagum-I 3P model demonstrated the best 

performance, with the lowest AIC (5428.99), BIC (5444.86), 

CAIC (5430.99), HQIC (5434.91) and ABIC (5429.99), 

alongside the highest log-likelihood (-2711.50). These 

metrics suggest that Dagum-I 3P effectively captures the 

underlying distribution of xylene concentrations, reflecting 

its balance of accuracy and complexity. The Burr XII 3P 

model performed reasonably well for xylene, as indicated by 

its second-lowest AIC (5438.67) and BIC (5454.54) values, 

though it trailed the Dagum-I 3P model. Conversely, the 

Log-Logistic 3P model had the highest AIC (5453.04) and 

other criteria values for xylene, indicating a relatively 

weaker fit compared to Dagum-I 3P. 

 

In the case of toluene, the Log-Logistic 3P model provided 

the best fit, as evidenced by its lowest AIC (9208.48), BIC 

(9224.34), CAIC (9210.48), HQIC (9214.40) and ABIC 

(9209.48) values. These results suggest that the Log-Logistic 

3P model effectively captures the unique distributional 

characteristics of toluene, providing a more accurate fit than 

the other distributions. The model’s log-likelihood of -

4601.24, although not the highest among the three, further 

supports its robustness for toluene. The Dagum-I 3P model 

showed comparable performance with an AIC of 9216.53 

and a log-likelihood of -4605.27, whereas the Burr XII 3P 

model had significantly higher AIC and BIC values (9275.37 

and 9291.23 respectively), marking it as the least suitable 

model for toluene. 

 

For Benzene, Dagum-I 3P again emerged as the best-fitting 

model, achieving the lowest AIC (5839.09), BIC (5854.95), 

CAIC (5841.09), HQIC (5845.00) and ABIC (5840.09) 

values, alongside the highest log-likelihood (-2916.54). This 

distribution’s performance for benzene indicates a strong 

alignment with the dataset, particularly in capturing the 

heavy-tailed characteristics often seen in benzene. The Burr 

XII 3P model was followed with slightly higher values, 

whereas the Log-Logistic 3P model had the highest AIC 

(5897.54), indicating a less optimal fit for Benzene 

concentrations. 

 

In summary, the Dagum-I 3P distribution consistently 

emerged as the most effective model for both xylene and 

benzene, while the Log-Logistic 3P model demonstrated a 

strong fit for Toluene. The Burr XII 3P model generally 

performed the least well across all pollutants. These findings 

highlight the necessity of selecting pollutant-specific models 

that accurately capture the distributional nuances of each 

VOC, thereby enhancing our understanding of air quality 

dynamics. This model-specific approach is essential for 

accurate environmental monitoring and the development of 

data-driven strategies to manage VOC concentrations in 

Visakhapatnam, ultimately supporting informed policy 

decisions aimed at protecting public health. 

 

Comparisons via Performance Criteria and Cross-

Validation: Model performance metrics and cross-

validation results to evaluate the robustness of the Burr XII 

3P, Log-Logistic 3P and Dagum-I 3P distributions for 

modeling VOC (xylene, toluene and benzene) 

concentrations were compared. Multiple performance 

metrics included AIC, BIC, CAIC, HQIC and ABIC, along 

with log-likelihood to assess model fit quality for each 

distribution.

 

Table 6 

Average Information Criteria for Model Distributions of Xylene, Toluene and Benzene  

using 10-Fold Cross-Validation 

Distribution Airborne AIC BIC CAIC HQIC ABIC LL 

Burr XII 

3P 

Xylene 5438.67 5454.54 5440.67 5444.59 5439.67 -2716.34 

Toluene 9275.37 9291.23 9277.37 9281.29 9276.37 -4634.68 

Benzene 5863.53 5879.4 5865.53 5869.45 5864.53 -2928.77 

Log-Logistic 

3P 

Xylene 5453.04 5468.91 5455.04 5458.96 5454.04 -2723.52 

Toluene 9208.48 9224.34 9210.48 9214.4 9209.48 -4601.24 

Benzene 5897.54 5913.4 5899.54 5903.46 5898.54 -2945.77 

Dagum-I 

3P 

Xylene 5428.99 5444.86 5430.99 5434.91 5429.99 -2711.5 

Toluene 9216.53 9232.4 9218.53 9222.45 9217.53 -4605.27 

Benzene 5839.09 5854.95 5841.09 5845 5840.09 -2916.54 
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These metrics provide a multidimensional view of model 

performance, helping to identify the best fit for each VOC 

based on a balance between accuracy and complexity. 

 

For xylene and benzene, the Dagum-I 3P distribution 

consistently achieved the lowest AIC, BIC, CAIC, HQIC 

and ABIC values, indicating it as the most suitable model. 

For toluene, the Log-Logistic 3P distribution demonstrated 

the best fit, with consistently lower criteria values, 

underscoring its strength in capturing the variability of 

toluene concentrations. The Burr XII 3P model, in contrast, 

showed relatively higher values across metrics, suggesting a 

limited ability to model these VOCs accurately.  

 

These findings appreciate applying 10-fold cross-validation, 

further validating model reliability through averaged 

performance metrics across multiple data segments. This 

method reduces the potential for overfitting and strengthens 

the evidence of model robustness. Cross-validation results 

confirmed that Dagum-I 3P maintained superior 

performance for xylene and benzene, while the Log-Logistic 

3P model remained optimal for toluene, reinforcing its 

effectiveness. The Burr XII 3P model again ranked lower, 

confirming its limitations in accurately representing VOC 

data patterns.  

 

Dagum-I 3P model provides the best fit for xylene and 

benzene, achieving the lowest average criteria scores. For 

toluene, the Log-Logistic 3P model consistently performs 

best, reflecting its capability to capture the compound’s 

variability. Across pollutants, the Burr XII 3P model ranks 

lower, underscoring its limitations in accurately representing 

these VOCs. This combined approach ensures that the 

selected models not only align well with observed VOC 

patterns but are also robust and reliable for use in 

environmental monitoring and predictive analysis. The 

results support targeted, data-driven decision-making for air 

quality management in Visakhapatnam, facilitating more 

effective mitigation strategies to address VOC pollution. 

 

Discussion 
This study provides a comparative analysis of statistical 

distribution models for predicting VOC concentrations, 

focusing on model effectiveness for different pollutants in 

Visakhapatnam and identifying the most suitable model for 

each compound. Our findings highlight the importance of 

pollutant-specific models that align with the unique 

distributional characteristics of each VOC. By applying Burr 

XII 3P, Log-Logistic 3P and Dagum-I 3P distributions, we 

observed distinct patterns that reveal both model suitability 

and the nuanced behavior of VOC concentrations in an 

urban-industrial setting. The Dagum-I 3P distribution 

proved most effective in capturing the heavy-tailed 

distributions of xylene and benzene, as indicated by its 

lowest KS, AD and CvM test values, as well as AIC, BIC, 

CAIC, HQIC and ABIC scores, alongside high p-values 

indicating a strong fit.  The heavy tails observed in xylene 

and benzene distributions suggest episodic concentration 

peaks, possibly driven by intermittent emissions or specific 

environmental conditions in which the Dagum-I 3P model 

accommodates well. This distribution’s ability to handle 

high skewness and kurtosis aligns with the concentration 

patterns of these VOCs, reflecting the impact of high-

emission events common in industrial areas. Its robustness 

was further validated through 10-fold cross-validation, 

confirming its effectiveness in modeling heavy-tailed data. 

Conversely, toluene’s concentration profile was best 

captured by the Log-Logistic 3P distribution, which 

achieved consistently lower goodness-of-fit and information 

criteria values than other models. The moderate skewness 

and comparatively lower kurtosis of toluene concentrations 

may account for this outcome, as the Log-Logistic 3P model 

is well-suited for data with moderate tail behavior.  

 

This fit may reflect a more consistent concentration pattern, 

likely to be influenced by stable emission sources such as 

vehicular emissions and other diffuse sources typical in 

urban environments, differing from the more episodic 

emissions observed in xylene and benzene. The Burr XII 3P 

distribution, though flexible, consistently ranked lower than 

the Dagum-I and Log-Logistic models in terms of goodness-

of-fit and selection criteria across all three VOCs. Its 

comparatively poorer performance highlights limitations in 

accurately representing the unique tail behaviors and 

skewness of these pollutants, underscoring the need for 

pollutant-specific modeling strategies instead of a one-size-

fits-all approach. 

 

These findings emphasize the practical importance of 

selecting models tailored to each pollutant, especially in 

industrial areas like Visakhapatnam, where VOC emissions 

vary by type and are affected by complex environmental 

factors. Tailoring models to each pollutant enhances 

accuracy in forecasting VOC levels, which is crucial for 

regulatory planning and public health assessment. 

Additionally, time series visualizations enabled us to 

observe seasonal trends and responses to external events 

such as the COVID-19 lockdown. Elevated VOC 

concentrations during colder months suggest that seasonal 

inversion effects contribute to pollutant accumulation, while 

declines during the lockdown highlight the role of human 

activity in VOC levels. These observations contextualize the 

extreme values in the data, validating the selected 

distribution models’ capacity to account for variability 

influenced by both seasonal and anthropogenic factors. 

 

This study underscores the utility of performance metrics 

and cross-validation techniques in environmental modeling, 

advocating for their broader use in air quality assessments. 

While the current analysis focuses on xylene, toluene and 

benzene, future research could extend this approach to other 

VOCs or pollutants with similar complex distributional 

properties. Additional studies could also examine 
interactions between VOC concentrations and 

meteorological factors to further enhance predictive 

accuracy in urban-industrial areas.  
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In summary, our pollutant-specific modeling approach, 

validated through rigorous goodness-of-fit testing and cross-

validation, provides a robust framework for accurately 

capturing VOC concentration distributions. These findings 

are critical for environmental policy-making, enabling data-

driven strategies for air quality management tailored to the 

distinct pollution profiles of urban-industrial contexts like 

Visakhapatnam. 

 

Conclusion 
This research presents a comprehensive modeling approach 

for VOC (Xylene, Toluene and Benzene) concentrations in 

Visakhapatnam, showing that advanced statistical 

distributions like Dagum-I 3P and Log-Logistic 3P 

effectively capture the distributional characteristics of 

xylene, benzene and toluene. By applying a suite of 

goodness-of-fit tests, performance metrics and cross-

validation, we established that the Dagum-I 3P distribution 

is most suitable for the highly skewed and heavy-tailed 

distributions of xylene and benzene, while the Log-Logistic 

3P distribution best represents the moderately skewed 

toluene concentrations. These findings emphasize the 

importance of selecting pollutant-specific models, as each 

compound’s unique distributional profile affects model 

accuracy and reliability.  

 

This tailored approach to VOC modeling offers a valuable 

tool for environmental monitoring, supporting more precise 

forecasts of VOC levels and risk assessment in regions with 

similar industrial profiles. Our methodology provides a 

framework that can guide air quality management, helping 

policymakers to prioritize regulatory efforts and refine 

interventions for specific pollutants. Future work could 

extend this modeling approach to additional VOCs or 

regions, further enhancing data-driven environmental health 

strategies across urban-industrial contexts. 
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